
WIRTSCHAFTSUNIVERSITÄT WIEN

Masterarbeit

Titel der Masterarbeit:
Generic Relation Extraction     

Verfasserin/Verfasser:
Weber Gerald     

Matrikel-Nr.:
0125536     

Studienrichtung:
Wirtschaftsinformatik     

Beurteilerin/Beurteiler:
PD Dipl.-Ing. Mag. Dr. Albert Weichselbraun    

Ich versichere, dass:

ich die Masterarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt und mich auch sonst keiner unerlaubten Hilfe bedient habe.

ich dieses Masterthema bisher weder im In- noch im Ausland (einer Beurteilerin/einem Beurteiler zur
Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

diese Arbeit mit der vom Begutachter/von der Begutachterin beurteilten Arbeit übereinstimmt.

Datum Unterschrift

Contents

1 Introduction and Motivation 2

2 Generic Relation Extraction Systems 3
2.1 Dual Iterative Pattern Relation Expansion (DIPRE) 3

2.1.1 The Problem . 3
2.1.2 Experiments . 5
2.1.3 Conclusion . 6

2.2 TEXTRUNNER . 6
2.2.1 Architecture . 6

2.2.1.1 Self-Supervised Learner 7
2.2.1.2 Single-Pass Extractor 7
2.2.1.3 Redundancy-Based Assessor 7

2.2.2 Experimental Results . 7
2.2.3 Conclusion . 8

2.3 Open Information Extraction System using Conditional Random Fields
(O-CRF) . 8
2.3.1 The Nature of Relations in English 8
2.3.2 Relation Extraction . 9
2.3.3 Training . 10
2.3.4 Extraction & Results . 10
2.3.5 Conclusion . 11

2.4 SNOWBALL and STATSNOWBALL . 11
2.4.1 SNOWBALL . 12
2.4.2 STATSNOWBALL . 13
2.4.3 Conclusion . 13

2.5 KnowItNow . 15
2.5.1 The Bindings Engine (BE) . 15
2.5.2 Experimental Results . 16
2.5.3 Conclusion . 16

3 Method - A Generic Relation Extraction System 17
3.1 Introduction . 17

i

3.2 Design . 17
3.2.1 Natural Language Processing (NLP) Package 18
3.2.2 Relation Extractor . 21
3.2.3 Database Design . 22
3.2.4 Pattern Inspector . 22
3.2.5 Pattern Classifier . 25
3.2.6 OpenCalais Client . 26

4 Evaluation 27
4.1 Test setup . 27
4.2 Extract Entities and Relations . 27
4.3 Precision and Recall of Entities . 30
4.4 Precision and Recall of Relations . 33

5 Conclusions and Future Work 40

6 Appendix 41
6.1 Setup of the Software Environment . 41

6.1.1 Introduction . 41
6.1.2 Java Database Connectivity (JDBC) driver 42
6.1.3 Create User and Database . 42
6.1.4 Natural Language Processing (NLP) Package 44

6.2 Implementation . 44
6.2.1 Database . 44
6.2.2 Relation Extractor . 49
6.2.3 Pattern Inspector . 52
6.2.4 Pattern Classifier . 52

6.3 Using the Pattern Inspector . 53
6.4 Penn Treebank Annotation Tags . 53

ii

Abstract

Due to the vast extent of the Word Wide Web it becomes more and more complicated to
find context based information. Because of the redundancy of information in the web,
search engine queries result an unmanageable number of documents containing possible
answers. Inspection of these results requires to much time and is not practicable in many
cases. Extracting these relations from the documents in advance and storing them in a
simplified manner would reduce the search effort tremendously. This thesis deals with the
development of an extraction system capable of finding and storing domain independent
relations from text.

Zusammenfassung

Aufgrund der unglaublichen Ausmaße des Internets wird es immer schwieriger kon-
textbasierte Informationen aufzuspüren. Die Redundanz des Systems liefert für ein-
fache Anfragen oft eine unüberschaubare Anzahl an Ergebnisdokumenten, deren Durch-
sicht auf der Suche nach der Antwort viel Zeit in Anspruch nimmt. Könnte man die
Zusammenhänge extrahieren anstatt Dokumente als Ergebnis zu liefern, würde das den
Suchaufwand verkleinern. In dieser Arbeit wird ein System zur Extraktion von Relatio-
nen beschrieben mit dem Ziel domänenunabhängige Zusammenhänge zwischen Objekten
schnell aufzufinden und einheitlich abzuspeichern.

Key Words
Open information extraction, relation extraction, natural language processing, Stanford
NLP

1 Introduction and Motivation

Since the invention of the World Wide Web (WWW), mankind attempt to harness the
knowledge caught in billions of web sites. The Web started as a tool for military/scientific
institutions and reached an expansion of 26 million pages in 1998. Since then the Internet
has reached the billion mark in 2000 growing further to hit the one trillion unique URLs
milestone in 2008 according to Google [1]. So, many people use search engines like Bing,
Google, Yahoo, etc. to query the Web. Due to its astonishing size, most query terms occur
in different contexts which have to be narrowed down by describing the search terms in
more detail. Mostly, to put the terms into context, known relations of the query terms are
used (e.g. working with, born at, living at for people search).

Therefore, systems that learn to extract relations between entities would be required to
find entities and their different contexts. Search engines are not designed to behave like a
natural language processing (NLP) system, which is a key component for such extraction
tasks. While some mature solutions for text analysis exist, most of them are commercial
like Thompson Reuters OpenCalais1 with its CalaisViewer2.

Nevertheless, some systems evolved in recent years, capable of extracting relationship
between entities. Some of them are restricted to a domain whereas others are able to find
relations in text from any domain. While none of the systems is freely available our mo-
tivation is to create a model of an Open Information Extraction (Open IE) system, that
is capable of detecting named entities (NE) and relations between them from domain-
independent text. Furthermore we want to implement a prototype and inspect its perfor-
mance in terms of speed, recall and precision. While we want to reduce manual activities
to a minimum, a graphical application helps the user to distinguish between relevant and
irrelevant relations found by our system. This task is required to train a classifier, which
finally identifies relevant relations automatically.

The reminder of this thesis is organized as follows. Chapter 2 (Generic Relation Extrac-
tion Sytems) provides a description of a selection of Open IE systems to get an under-
standing how different systems described in literature try to solve the task of Open IE.
Chapter 3 (Building our own Generic Relation Extraction System) introduces a model for
open domain relation extraction. The design of the system as well as experimental results
are described there in detail. Finally, this thesis concludes with conclusions and outlook
on potential future work in Chapter 5 (Conclusions and Future Work).

1http://www.opencalais.com/
2http://viewer.opencalais.com/

2

http://www.opencalais.com/
http://viewer.opencalais.com/

2 Generic Relation Extraction
Systems

To understand how an Open IE system works we present systems which are either using
state-of-the-art technology to accomplish the task or systems that were pioneers in this
field of science. Due to the the usage of different corpora, it is not easily possible to
compare the presented results of the following systems directly. Nevertheless, the study
will provide a good insight into the problems that occur while trying to extraction relations
from text.

2.1 Dual Iterative Pattern Relation Expansion
(DIPRE)

To build an unprecedented source of information, Sergei Brin designed in 1998 the semi-
automatic Web relation extraction system. As one of the pioneers in the field of relation
extraction, the algorithm is explained by extracting relations between authors and title of
books from the Web, starting with a small seed set of these pairs. The idea is to find
(all) occurrences of (author, title) of the starting set in the web and learn the patterns
describing these occurrences to find other (author, title) pairs which will result in a larger
set of books. The new results lead to further patterns, that are used to start over and looks
for more occurrences of the generated patterns. After some iterations, almost all books
and patterns will be learned. The algorithm is illustrated in Figure 2.1.

This method is called DIPRE - Dual Iterative Pattern Relation Expansion ”which relies
on a duality between patterns and relations” [2].

2.1.1 The Problem

Apart from finding the books on the web and extracting the patterns, the major problem is
”to maximize the coverage and minimize the error rate” [2]. So we want to find as many
as possible books to identify (<author, title> pairs) and reduce the number of false hits to
a minimum. While ”a recall of 20% may be acceptable” [2], ”an error rate over 10%
would likely be useless for many applications” [2]. The small recall is only practicable in

3

Figure 2.1: DIPRE flowchart

4

the case of a sufficiently large database (the Web) were redundant books can appear. So
the message is, that it is not required to find every occurrences of a <author, title> pair on
the Web (= low recall), but it is crucial to find only correct matches (= high precision).

The main problem is the generation of the patterns from the discovered <author, title>
values. The pattern should be as concrete as possible to prevent matching of bogus tuples
and general enough to match new values [2]. The suggested solution by Brin is called the
Dual Iterative Pattern Relation Extraction (DIPRE) algorithm, which has the following
skeleton:

1. Provide a small set of values of the desired relation (e.g. William Shakespeare, The
Comedy of Errors for a author, title relation)

2. Start a Web search to find all appearances of the provided values. The context and
the Uniform Resource Locator (URL) should be stored too.

3. Generate patterns to match the detected values

4. Extract a set of values from the stored occurrences that match the generated patterns

5. Start over with step 2 until the set is large enough

So while some bogus tuples can distract the pattern generation which would lead to
more invalid tuples, the expansion of the patterns has to bypass a security mecha-
nism. In this case, each pattern has to match multiple patterns to count as a valid pat-
tern. Therefore the pattern generation is the main topic here which ”is a nontrivial
problem and there is the entire field of pattern recognition devoted to solving the gen-
eral version of this problem” [2]. To reject patterns which would cause detection of
nonbooks, the specificity of every pattern is calculated. Patterns are kept in case that
specificity(pattern) ∗ number of books found > threshold.

2.1.2 Experiments

For experiments, 24 million web pages were available as part of Stanford WebBase. Start-
ing with an initial set of five selected (author, title) pairs, 199 book occurrences were dis-
covered and 3 patterns generated. Note, that no web pages from Amazon were involved.
A run with these patterns over matching URL’s produced 4,047 unique <author, title>
pairs [2]. Searching these books on 5 million web pages discovered only 3,972 occur-
rences which was disappointing. Nonetheless, 105 patterns were generated (24 of them
were bogus) for these books. The next iteration delivered 9,127 unique (<author, title>)
pairs and 242 were faulty pairs - the author was Conclusion and was therefore removed.
This was the only human interference in the whole process. The final iteration with the
remaining 9,127 books on a subset consisting of 156,000 documents produced 9,938 oc-
currences and generated 346 patterns. Scanning over the same set of documents produced
15,257 unique books with very little bogus data [2].

5

2.1.3 Conclusion

As you can see, DIPRE is a remarkable tool, which started with a small set of five books
and expanded it to a list of over 15,000 books. The difficulty with DIPRE is to prevent the
algorithm from accepting too much patterns and drifting in a direction which has nothing
in common with the initial task [2]. Sadly, the generation of the patterns is not part of
Brin’s paper.

2.2 TEXTRUNNER

TEXTRUNNER is a system operating on domain independent unstructured text [3]. There-
fore, Banko et al. extract n-ary tuples from web crawls like other systems operating on
raw text. TEXTRUNNER faces systems like DIPRE, SNOWBALL and KNOWITALL, but
has additional advantages that makes it unique:

1. TEXTRUNNER operates in batch mode. So it creates a huge amount of data on
a web crawl once whereas other systems start the web crawl on demand. This
approach allows pre-computing of results giving the system the possibility to re-
sponse faster to user queries [3]. Other systems start downloading and indexing of
data only in response to a user query.

2. While TEXTRUNNER does not need a target relation or schema to start, it has the
ability to acquire new relations as they occur in new articles [3]. Other systems
that start with a given set of seed pairs are more or less caught in their schema.
Nevertheless the distraction of a system with starting seeds is less probable.

The output of TEXTRUNNER has three unique characteristics in comparison to other text-
centric extractors:

1. It returns binary relations instead of 3-ary or larger tuples. These binary relations
usually consists of two nouns and a linking relation.

2. Due to the binary relation, the domain of text-derived data may differ from the
domain found in relations because of the missing context.

3. In contrast to extraction systems like WEBTABLES [4], where every relation found
is based on a single occurrence on the web, TEXTRUNNER extracts only relations
which occur multiple times because the linguistic extractors of TEXTRUNNER are
quite fallible.

2.2.1 Architecture

The architecture of TEXTRUNNER consists of three key modules:

6

1. Self-Supervised Learner: This learner can operate without hand-tagged data and
outputs a classifier distinguishing between relevant and irrelevant tuples [5].

2. Single-Pass Extractor: This extractor generates candidate tuples for each sentence
by processing the entire corpus in a single pass. The tuples labeled as relevant by
the classifier are retained.

3. Redundancy-Based Assessor: Finally, each remaining tuple is assigned a possibility
providing information about the correctness of extraction [5]. The probabilistic
model of redundancy was introduced by Downey et al., 2005 [6].

The following subsections describe the modules in more detail.

2.2.1.1 Self-Supervised Learner

The learner first start with an unsupervised learning of its training data. Then, it trains
a Naive Bayes classifier with the labeled data which is used by the third module: The
Extractor. While a parser would not be successful on Web-scale, the Learner uses one to
identify a set of trustworthy extractions which are used as training examples for a Naive
Bayes classifier [5].

2.2.1.2 Single-Pass Extractor

With a single pass over the corpus, each word and each sentence will be tagged with
its most probable part-of-speech. Using this information and a lightweight noun phrase
chunker the extractor can identify entities. Relations are found by examining the text
between the entities. Each noun is annotated with a probability to express the certainty
of a noun being part of an entity. Tuples with lower probable entities are likely to be
discarded by the extractor. Finally, for each candidate tuple the classifier stores correct
tuples and rejects erroneous ones [5].

2.2.1.3 Redundancy-Based Assessor

Inside the extraction sequence, TEXTRUNNER normalizes the relation by omitting non-
essential modifiers from text (e.g. ’was originally developed by’ -> ’was developed’).
After extraction, TEXTRUNNER merges identical relations and counts the number of dis-
tinct sentences from which each extraction was extracted. In this way, the model can
estimate the correctness of a tuple depending on the number of its occurrences.

2.2.2 Experimental Results

To measure the efficiency of TEXTRUNNER it is compared to a traditional IE system.
In this case KNOWITALL is used to extract facts from a nine million Web page corpus.

7

While this system needs a set of start seeds, ten relations were selected in advance to start
the process. Over this test set of nine million pages, the system’s error rate and number
of correct extractions are (see Table 2.2).

Average Error
rate

Correct
Extractions

TEXTRUNNER 12% 11,476
KNOWITALL 18% 11,631

Figure 2.2: Error rate comparison: 33% lower than with KNOWITALL [5]

2.2.3 Conclusion

Even though the Open IE system TEXTRUNNER does not use Named Entity Recognition
(NER) and syntactic or dependency parsers to detect relations, it reaches the precision of
state-of-the-art systems like KNOWITALL by using a self-supervised learner.

2.3 Open Information Extraction System using
Conditional Random Fields (O-CRF)

This paper written by Michele Banko and Oren Etzioni in 2008 introduces a new relation-
independent extraction paradigm called Open Information Extraction. This paradigm is
designed for massive, heterogeneous corpora like the Web [7]. They further describe a
model called O-CRF with higher precision and recall than TEXTRUNNER, which is the
predecessor of O-CRF.

For an unsupervised way of learning, Klein and Manning [8] showed, ”that unlexicalized
parsers are more accurate than previously believed, and can be learned in an unsuper-
vised manner” [7]. Therefore, Banko et al. replaced the Naive Bayes Classifier used to
decide whether a relation is trustworthy or not by an algorithm using Conditional Random
Fields (CRF).

2.3.1 The Nature of Relations in English

To build an relation independent retrieval system, we have to understand how relations
in the English language are expressed. For this task, the authors extracted relation-
independent lexico-syntactic patterns and counted their occurrence [7]. By doing so, they
found out, that 95% of all relations could be covered by one of the following eight cate-
gories of patterns (Table 2.3):

8

Relative Frequency Category Simplified Lexico-Syntactic Pattern

37.8 Verb E1 Verb E2

X established Y
22.8 Noun+Prep E1 NP Prep E2

X settlement with Y
16.0 Verb+Prep E1 Verb Prep E2

X moved to Y
9.4 Infinitive E1 to Verb E2

X plans to acquire Y
5.2 Modifier E1 Verb E2 Noun

X is Y winner
1.8 Coordinaten E1 (and|,|-|:) E2 NP

X-Y deal
108 Coordinatev E1 (and|,) E2 Verb

X, Y merge
0.8 Appositive E1 NP (:|,)? E2

X hometown Y

Figure 2.3: ”Taxonomy of Binary Relationships: Nearly 95% of 500 randomly selected
sentences belongs to one of the eight categories above” [7]

2.3.2 Relation Extraction

In contrast to an traditional relation extraction system, where the relation is an input to the
extraction task and therefore known in advance, an open information extraction system
must find out the entities participating in a relation as well as the copulas connecting the
entities [7]. Furthermore the Open IE process does neither know which type the partic-
ipating entities are nor that these are named entities (e.g. in an relation called HEAD-
QUARTERS(x, y) where one entity could be a location and the other one a company
name). These problems have led the authors to developing a method using Conditional
Random Fields (Lafferty et al., 2001) which ”are undirected graphical models trained
to maximize the conditional probability of a finite set of labels Y given a set of input
observations X” [7].

The goal is to use CRF for relation extraction as it is used for other tasks in NLP like word
segmentation, NER, POS tagging. Recently, CRF was also used for relation extraction
(see Culotta et al.,2006).

9

2.3.3 Training

Training the CRF classifier is self-supervised. By applying ”relation-independent heuris-
tics to the Penn Treebank it obtains a set of labeled examples in the form of relational
tuples” [7]. These tuples are used to train a CRF model, capable of identifying tokens
indicating relations between entities. Nevertheless, there are some limitations known for
the O-CRF system like

1. O-CRF can only extract explicitly mentioned relations from text

2. relation extraction is primarily word-based instead of using additional features like
punctuation

2.3.4 Extraction & Results

While this system should operate on Web-scale, entity recognition is accomplished in a
single pass like TEXTRUNNER does. Subsequent to the recognition, O-CRF applies an
algorithm called RESOLVER (see Yates and Etzioni, 2007) to find relation synonyms.

To compare O-CRF and O-NB (used in TEXTRUNNER) both algorithms had to identify
relations within a set of 500 sentences. As you can see from Table 2.4 O-CRF nearly
doubles recall and slightly elevates precision in comparison to O-NB.

O-CRF O-NB
Category P R F1 P R F1

Verb 93.9 65.1 76.9 100 38.6 55.7
Noun+Prep 89.1 36.0 51.3 100 9.7 55.7
Verb+Prep 95.2 50.0 65.5 95.2 25.3 40.0
Infinitive 95.7 46.8 62.9 100 25.5 40.6

Other 0 0 0 0 0 0
All 88.3 45.2 59.8 86.6 23.2 36.6

Figure 2.4: Open Extraction by Relation Category: O-CRF has increased recall and pre-
cision compared to O-NB [7]

In a further experiment, O-CRF was compared to a traditional relation extraction sys-
tem (referred as R1-CRF), which is trained with manually tagged training data that has a
higher quality than O-CRFs self-supervised training data, but is more expensive to gen-
erate [7]. This is a comparison between the self-supervised, unlexicalized O-CRF and a
supervised, lexicalized extraction system. Furthermore, the extraction task was reduced
to four different relations - birthplaces, award winners, corporate acquisitions and inven-
tors. While R1-CRF was trained separately on each of the four relations, O-CRF ran all
tests without specialized training. Table 2.5 shows the results of this task.

10

O-CRF R1-CRF
Relation P R P R Train Ex1

Acquisition 75.6 19.5 67.6 69.2 3042
Birthplace 90.6 31.1 92.3 64.4 1853
InventorOf 88.0 17.5 81.3 50.8 682
WonAward 62.5 15.3 73.6 52.8 354

All 75.0 18.4 73.9 58.4 5930

Figure 2.5: Comparison of precision and recall between O-CRF and a traditional relation
extraction system R1-CRF [7]

Finally, Table 2.5 shows, that a large number of hand-labeled training data is required to
achieve the precision of O-CRF. The low recall of O-CRF (18.4%) can partly be concerned
to an lack of lexicalized features as well as POS errors. Furthermore O-CRF is not able
to discover most of the synonyms in comparison to R1-CRF.

2.3.5 Conclusion

While O-CRF does disclaim NER to find possible relations in text, it reaches remark-
able results by learning a model from relation-independent, lexico-syntactic patterns. In
summary, O-CRF is the preferred tool at the expense of recall, when [7]

• kind of relations are unknown and

• number of relations is vast.

Otherwise, if a higher recall is required, traditional relation extraction would be advisable.

2.4 SNOWBALL and STATSNOWBALL

The Department of Computer Science of the Columbia University in New York devel-
oped a relation extraction system which is capable to work on large plain-text collections.
This system address the problem of reducing the manual work required to train tradi-
tional extraction systems for new domains. One of the papers [9] describing SNOWBALL

mention the creation of powerful graphical user interfaces for training a system which
would still require a domain expert to do so. Another suggestion would be the usage of a
large manually tagged corpus for training operations. Manually annotating a large corpus
in turn involves a large amount of labour too. Closest to SNOWBALL are systems that
use unlabeled corpora for training purposes and use bootstrapping for the extraction pro-
cess. Bootstrapping is an approach using a training set to prepare a classifier for its real
extraction task.

11

2.4.1 SNOWBALL

The main components of the SNOWBALL system are shown in Figure 2.6:

Figure 2.6: SNOWBALL’s main components [9]

SNOWBALL starts an extraction process with some example tuples. In this case, we only
consider organization-location tuples <o,` >. In comparison to Section 2.1, one such tu-
ple could be <Microsoft, Redmond>. While DIPRE (Section 2.1) does not use any kind of
NLP like POS or NER, the first improvement of SNOWBALL ”is that SNOWBALL’s pat-
terns include named-entity tags” [9]. Therefore, a SNOWBALL pattern would not simply
connect any strings like Microsoft and Redmond together, but annotates them with OR-
GANIZATION respectively LOCATION annotation. So, the example patterns generated
by SNOWBALL would look like in Table 2.7:

<ORGANIZATION>’s headquarters in <LOCATION>
<LOCATION>-based <ORGANIZATION>
<ORGANIZATION>, <LOCATION>

Figure 2.7: Example of generated tags by SNOWBALL [9]

For the task of relation extraction, the system creates patterns, which will be compared
to relation candidates. A pattern in the SNOWBALL system ”is a 5-tuple <left, tag1,
middle, tag2, right>, where tag1 and tag2 are named-entity tags, and left, middle and
right are vectors associating weights with terms” [9]. For example, the SNOWBALL

pattern <{<the, 0.2>}, LOCATION, {<-, 0.5>,<based, 0.5>}, ORGANIZATION, {}>
would match ”the Irving-based Exxon Corporation,” [9], with the preceding article the
(left context) followed by the location Irving. The middle context is assembled by ”-”
and ”based” whereas the end of the matching string is represented by an organization
Exxon Corporation. Marginal variations of the matching phrase would match too, but
to a smaller degree. To calculate a match between a pattern and a candidate S (has to
match the location and organization tags), SNOWBALL first constructs ”three weight vec-
tors lS , rS and mS from S by analyzing the left, right, and middle contexts around the

12

named entities” [9]. The weight of each term in the vectors are based on the frequency of
their occurrence in the corresponding context. The weights are normalized and scaled to
represent their relative importance. ”After extracting the 5-tuple representation of string
S, SNOWBALL matches it against the 5-tuple pattern by taking the inner product of the
corresponding left, middle and right vectors” [9].

Therefore SNOWBALL generates 5-tuples for all seed tuples. The resulting 5-tuples are
clustered together by the similarity calculated by a matching function. If the candidate
pattern excess an defined minimum similarity threshold, it will be added to the extraction
patterns. So, the improvement over DIPRE is the pattern and tuple evaluation which forms
the key part of the SNOWBALL system [9].

2.4.2 STATSNOWBALL

In contrast to the related SNOWBALL system, STATSNOWBALL uses a statistical extrac-
tion model (Figure 2.8):

The first part P1 represents the input. Like in SNOWBALL, the system can deal with seeds
that contain no relation specific keywords (e1, e2, ?) and with seeds that contain such
keywords (e1, e2, key). Therefore, an initial model can be provided. In the second part
P2 which is called statistical extraction model, the input seeds and the optionally provided
input model are used to learn the extractor. ”We apply the `2-norm regularized maximum
likelihood estimation (MLE) at this step” [10]. The learned model is then used to extract
new relation tuples. In the third step of P2 (generated patterns) new extraction patterns are
generated and used to improve the model. The systems iteratively runs through these four
steps until no new tuples are found and no additional extraction patterns are generated.
The third and final part of the system P3 is only required for Open IE to present the output.
Therefore it is treated as an optional post-processing step.

The main advantages of STATSNOWBALL over SNOWBALL in summary are:

• STATSNOWBALL is capable of traditional relation extraction as well as Open IE

• improvements in the evaluation and selection of new extraction patterns

• the weights of newly generated patterns are automatically calculated by Markov
Logic Networks (MLN)

• easily extensible

2.4.3 Conclusion

Based on the improvements over SNOWBALL, a relation search-engine called Renlifang
has been established on the Chinese Search market. The English counterpart is called
Entitycube and is accessible via http://entitycube.research.microsoft.
com/.

13

http://entitycube.research.microsoft.com/
http://entitycube.research.microsoft.com/

Figure 2.8: STATSNOWBALL’s main components [10]

14

2.5 KnowItNow

Some NLP systems rely on Web search engines like Google to support their computa-
tions tasks. While these search engines are limiting the traffic, this task can become very
slow with a high number of queries. So Google introduced an API to handle program-
matic queries and limits the number they can issue. KNOWITALL is one system using
an search engine to optimize its results. Whereas the first step, the generation of candi-
date facts by using domain-independent extraction patterns runs offline, the plausibility
of the candidate facts is calculate by the use of hit-counts from search engine results. The
measure is called point-wise mutual information (PMI) statistics which requires a number
of queries for each candidate. With a raising number of candidates the time required for
an experiment will go off. To overcome these problems of Web-based IE systems, the
authors developed a search engine called Bindings Engine (BE) which finds bindings by
providing variabilized queries [11]. Instead of querying the web for each task, the BE will
return a list of occurrences to the question: ProperNoun(Head(<NounPhrase>)).

2.5.1 The Bindings Engine (BE)

Traditional Web-based IE systems would query a search engine to find an answer to the
question cities such as by

1. fetching all documents returning to the query cities such as

2. searching in all documents for the query text and estimating if the noun phrase
following cities such as matches the correct linguistic type

3. returning the string in case the type matches

While the querying a search engine is relatively fast, retrieving all documents of the result
set is slow. There is a difference between a Web search engine and a private search engine
which operates locally, but at scale this will not solve the problem. Therefor, the BE is
designed to prevent the third step by dealing with queries containing

• typed variables (e.g. NounPhrase)

• string-processing functions

as well as standard query terms [11]. To achieve high speed at search time, the BE builds
a so called neighborhood index containing the context of the typed variables to prevent
fetching each document. Finally, each row in the index is connected to a document con-
taining the string. While the search will be pushed by using the inverted index, a drawback
could be the high disk space consumption. The decision between the BE and a privately
operated search engine like Nutch1 ended in favor of BE. The crucial speed comparison
experiment with a 60 million Web pages covering corpus ended with the fact, that BE is
134 times faster than the Nutch index with at same configuration.

1http://lucene.apache.org/nutch

15

http://lucene.apache.org/nutch

2.5.2 Experimental Results

While KNOWITNOW is limited by its index, KNOWITALL is limited by the search engines
quota. Under these restrictions, four relations were extracted from both systems: Unary
relations like Country, Corporation and binary relations like CeoOf(Corp, Ceo), Cap-
tialOf(Country, City). While both systems use the OpenNLP POS tagger, KNOWITALL

applies it to documents returned by Google queries whereas KNOWITNOW applies it to
already crawled web sites. For the unary relations KNOWITNOW discovers 70-80% of the
instances found by KNOWITALL at a precision of 0.9 . This result is accomplished while
this relations only have a limited number of correct instances. In contrast to the binary
relations, where this number can be enormous (e.g. CeoOf because of an high number
of corporations and CEO’s as well as the low frequency of these instances. To achieve a
comparable recall for the binary relations with KNOWITNOW, an experiment showed an
approach with a corpus of 400 million pages. KNOWITALL needs only 300,000 Google
queries to achieve the same recall at a precision of 0.9 . Nevertheless, KNOWITALL re-
quires more than three days to fire these queries whereas KNOWITNOW finishes the task
in several minutes.

2.5.3 Conclusion

So, given a large corpus of 400 million pages, KNOWITNOW can achieve a comparable
recall as KNOWITALL at the same precision. while KNOWITNOW can operate on smaller
corpora too at the cost of reduced precision/recall. Nevertheless, it has an impressive
extraction rate by the use of a Bindings Engine.

16

3 Method - A Generic Relation
Extraction System

3.1 Introduction

Based on the insights gained from other Open IE systems described in Section 2, we
tried to implement a prototype for open relation extraction. Open in a way that it should
reveal new relations and not be limited to a pre-defined set of relation types. The simplest
way to start would be to imitate DIPRE (Section 2.1) with its <author, book> relation or
Snowball (Section 2.4) which starts with <organization, location> tuples to find patterns
that describe relations between supplied entities.

However, our prototype will stick to binary relations between entities and can learn how
relevant relations look like. A graphical tool to inspect the revealed relations should be
developed too. For testing purposes we use a Thompson Reuters corpus containing over
800.000 news articles starting from 20-08-1996 till 19-08-1997 with an average length
of 1400 characters, varying from 1 to 54740. This corpus is not annotated and relations
are not known in advance. Each article is assigned to one or more industries, regions and
topics.

The remainder of this section describes the development of a prototype starting with the
design (Section 3.2) which contains a detailed description of all required parts. Before we
run the prototype, the test setup (Section 4.1) will be described. Finally, the evaluation
and results will be presented in Section 4 which concludes this chapter.

3.2 Design

This section describes the design of the prototype used to extract relations from open
domain documents.

The first part of the model in Figure 3.1 is called NLP Package (Section 3.2.1) and summa-
rizes sparse text processing components used to split the articles into sentences (Sentence
Splitter) and further to words (Word Tokenizer), generate the base form (Lemma Genera-
tor), assign part-of-speech (POS) tags (POS Tagger) and recognize the entity type (Named
Entity Recognizer - NER) for each chunk of the text.

17

The articles selected from the corpus form the input of the NLP Package. The output
of this component is the article annotated with POS and NE tags which builds the in-
put for the Relation Extractor (Section 3.2.2). Its first component is the NE Extractor
which is responsible for the determination of candidate sentences, the discovery of entity
types and their handling in the Pattern Extractor which extracts and stores POS patterns
representing a relation between two entities. In such cases, the corresponding tuple will
be extracted by the Tuple Extractor and stored in the database (Section 3.2.3). The Pat-
tern Filter (Section 3.2.4) is subsequent to the extraction and allows an user to inspect
and disable bad patterns manually by using the Pattern Inspector (Section 3.2.4) (man-
ual filtering) or by using the Pattern Classifier (Section 3.2.5) to automatically disable
bad patterns (automatic filtering). Though, the task of manual pattern selection is only
required once, to learn the classifier for automatic pattern discrimination.

The following sections describe the design parts and their components in more detail.

3.2.1 Natural Language Processing (NLP) Package

For the implementation of the prototype, we have chosen Stanford CoreNLP because
it provides good documentation and clear API design. Furthermore Stanford implements
Hidden Markov Models, Maximum Entropy and Conditional Random Fields for NLP pro-
cesses which are state-of-the art algorithms for NLP. The package contains the following
required components for our prototype:

• Sentence splitter divides each article into an array of sentences

• Word Tokenizer breaks up text into individual objects. The used PTBTokenizer
”Fast, rule-based tokenizer implementation, initially written to conform to the Penn
Treebank tokenization conventions, but now providing a range of tokenization op-
tions over a broader space of Unicode text” [12].

• Lemma Generator ”computes the base form of English words, by removing just
inflections (not derivational morphology)” [12]. Based on a finite-state transducer
it only works on noun plurals, pronoun case and verb endings. It does not support
comparative adjectives or derived nominals.

• Part-Of-Speech (POS) Tagger assigns parts of speech to each token of a text.
The Stanford POS tagger is an implementation of a log-linear part-of-speech tagger
[13] [14] and uses the Penn Treebank [15] tag set for English to annotate tokens.
Additionally to the three included English language taggers (trained on different
corpora), other models for Arabic, Chinese and German are available too. The
fastest supplied model left3words-distsim-wsj-0-18.tagger achieves an accuracy of
96.92% on Penn Treebank WSJ sections 22-24, however the bidirectional-distsim-
wsj-0-18.tagger model improves to 97.32% but is very slow. So for our prototype,
we would go with the left3words-distsim-sj-0-18 model. Nevertheless, with enough

18

Figure 3.1: Model of our relation extraction system

19

training data, it is possible to train our own model based on the Maximum Entropy
tagger.

• Named Entity Recognizer (NER) [16] ”provides a general (arbitrary order) im-
plementation of linear chain Conditional Random Field (CRF) sequence models,
coupled with well-engineered feature extractors” [12]. The default NER extractor
in the Stanford package uses a combination of three models trained on a mixture of
CoNLL1, MUC-62, MUC-7 and ACE3 named entity corpora for English to detect
the named entities PERSON, ORGANIZATION, LOCATION and MISC as well as
numerical entities DATE, TIME, MONEY and NUMBER. All unknown entities are
labeled as OTHER. With this combination of training sets, the developers created
models which should be very robust across domains. Therefore, we do not limit
our test to any specific domain, but are only interested in relations containing the
named entities PERSON, ORGANIZATION and LOCATION.

Additionally, the Stanford package contains a so called REGEXNER which stands
for Regular Expression NER. This component puts the user in the position to supply
a pattern and a entity class, which will override the entity recognition. Providing the
pair (Mubarak, PERSON) to the component would override any wrong recognition
(as happened during our tests) like (Mubarak, ORGANIZATION) by the Regular
Expression NER without learning a new model which would require a lot of hu-
man work for tagging a training a corpus manually. Even though we do not take
advantage of them to reduce the human interaction to a minimum, the developers
provided additional patterns to recognize ideologies (IDEOLOGY), nationalities
(NATIONALITY), religions (RELIGION) and titles (TITLE).

• Finally, a Syntactic Parser and Co-reference Resolution is available too. How-
ever, work by Taghunathan et al. [17] contains a detailed description of the im-
plementation of co-reference resolution. While a co-reference resolution system
would improve our recall (e.g. it would identify pronouns that could be replaced by
entities and form a new relation <entity>. . . <entity>), it turned out, that the imple-
mentation is not as stable as we would expect it. While we provided 6 GB memory
to the JVM4, we got OutOfMemoryExceptions on a regularly base. So we decided
to disable this feature.

The usage of these components is explained in Section 6.2.2.

1Conference on Computational Natural Language Learning
2Message Understanding Conference
3Automatic Content Extraction Program
4Java Virtual Machine

20

3.2.2 Relation Extractor

While the NLP components are ready to use, the Relation Extractor connects them to
process the input step-by-step. The first component is the NE Extractor (see Figure 3.1).
It is responsible for the extraction and storage of all detected entities found by the NLP
Package. The entities will be stored in the format <key, value> where key contains one of
<LOCATION, ORGANIZATION, PERSON> and value the concrete word in the article
tagged as entity. The entities would not be required for our pattern extractor, but we
will compare them with the entities found by OpenCalais. While we are interested in
relations between entities of type LOCATION, ORGANIZATION or PERSON, sentences
containing two or more entities are passed on to the Pattern Extractor which extracts the
words between and around the entity pair. If the number of words between the entities is
smaller than or equal a defined threshold (default is six words) we assume a relationship
and extract a pattern in the following form: {<left> <NE1> <middle> <NE2> <right>}
(see [2] [9]). The size of <left>, <middle> and <right> parts can be configured and
contain the POS tags of the words represented in the article whereas <NE1> and <NE2>
contains the type of the corresponding entity (see example of a pattern below).

We suppose, that <NE1> <middle> <NE2> forms the relation whereas the <left> and
<right> parts provide the context of the relation. The context is stored with the relation
to help the Relation Filter to identify bad patterns.

The Tuple Extractor uses the same layout {<left> <NE1> <middle> <NE2> <right>}
but stores the concrete values from the article text into the Pattern & Tuple Database.
Each tuple is connected with the corresponding pattern and the article containing the
relation.

This is an example sentence from an Reuters article:

“He told a gold seminar in Tokyo that gold could rise if President Bill Clinton
wins the U.S. presidential election in November and then raises U.S. interest
rates – something that would push down the U.S. stock market.”

A selected pattern looks like:

WDT NN MD VB IN NNP PERSON VBZ DT LOCATION JJ NN IN NNP
CC RB

The corresponding, stored tuple is:

that gold could rise if President Bill Clinton wins the U.S. presidential election
in November and then

21

3.2.3 Database Design

Before implementing the Relation Extractor (Figure 3.1) which is tied to the database we
developed a data-model for persisting the entities, patterns and tuples. Therefor additional
tables were required (Figure 3.2) to store the information. The additional tables called NE
and CALAIS are required for evaluation purposes only. The tables TUPLE and PATTERN
contain the extraction results of the Tuple/Pattern Extractor.

As Figure 3.2 shows, each article can have any number of extracted tuples identified by the
primary key tuple_id. The column article_id establishes the relation between article and
tuple whereas pattern_id connects each pattern with any number of tuples. The columns
left, ne1, middle, ne2, right contained in the tables pattern and tuple are explained in
Section 3.2. Finally, the iteration column contains a number which is incremented at each
start of the program, while enabled stores the status of a pattern: true for good patterns,
<false> for bad ones. The column modifier stores the modifying user: <m> for manual
change by using Pattern Inspector (Section 3.2.4) or <a> for automatic change by Pattern
Classifier (Section 3.2.5).

Section 6.2.1 explains the steps required to establish the data-model in a PostgreSQL
database system in detail.

3.2.4 Pattern Inspector

After extraction of entities and relations, a tool for further investigation of the results
(Figure 3.1) was developed. It allows filtering and sorting of patterns, tuples and arti-
cles and presents a good overview to identify incorrect relational patterns (bad patterns).
These patterns can be disabled by simply unchecking a check-box next to the malicious
patterns. The remaining patterns build the input for the Pattern Classifier (Section 3.2.5).
To recover from bad patterns, manual control of the generated patterns is necessary es-
pecially in Open IE systems. Because we are not limited to a domain, some periodic
occurring articles (e.g. sport results, stock rate tickers, etc.) will push specific bad pat-
terns. Furthermore, the manual pattern filtering GUI5 should be able to process a lot of
tuples and provide a good overview for finding and selecting bad patterns (based on the
contributions of [18]). Therefor we implemented a GUI to accomplish this steps. It is
called Pattern Inspector and is entirely written in JAVA (Figure 3.3).

The area on the left side contains the filter options and a table to display the found patterns.
Both filter options will be passed to the select statement triggered with the Search button.
Resulting rows can be sorted by clicking on the table column headers. The section in the
middle lists all tuples. Filtering is carried out on the client by regular expressions (Java
RowFilter) to improve filter speed by reducing network traffic (in case your database is
not local). In contrast the radio-buttons act on database side. If the radio-button enabled

5Graphical User Interface

22

Figure 3.2: ER diagram for the prototype

23

Figure 3.3: Java GUI of the Pattern Inspector

24

is selected, all tuples with an enabled pattern will be queried. Finally, articles will be
displayed on the right side. Industry, region and topic are filtered at the database, the
content can be filtered at the client. Furthermore, each area includes a master toggle-
button. If this button is selected, all other areas depend on the master area. If pattern is
defined as master area, selecting a row in the table would trigger the tuple search with the
selected patterns and present the results in the middle section. Efficiently finding concrete
tuples to the patterns is therefore facilitated. The other way round, if the tuple area is
assigned to be master, a list selection triggers a pattern search. The same principle applies
to the article area. Although the content of an article does not fit in the table, a dialog will
display the currently selected article after double clicking on it.

Implementation details are provided in Section 6.2.3.

3.2.5 Pattern Classifier

The pattern classifier is a linear classifier used to divide extracted patterns automatically
into good and bad patterns. Input for the classifier are hand labeled patterns from the
Pattern Inspector (Section 3.2.4). While labeling all patterns would take a long time, we
limited our labeling effort to the first 2638 articles (article_id < 5000) containing entities
of type ORGANIZATION, LOCATION or PERSON.

The resulting 4699 patterns were split into good and bad patterns by manual interaction
with the Pattern Inspector (Section 3.2.4). Only with this work, the classifier has data to
learn how good patterns look like. For learning the classifier we used 90% (=4228) of the
labeled patterns, keeping 10% (=471) back for testing it. After training the classifier, the
test set was labeled using the classifier observing the following result (confusion matrix
Table 3.4):

T F

T’ TP=258 FP=57
F’ FN=4 TN=152

Figure 3.4: Confusion matrix of the classifier

The resulting measures are:

• Precision = 0.8190

• Recall = 0.9847

• F1-score = 0.8943

25

3.2.6 OpenCalais Client

As our reference extraction system we use Thompson-Reuter’s service called Open-
Calais6. Its free version is limited to 4 queries per second or 50,000 per day whereas
the commercial version has no limitations. We build a simple client around the provided
Java API7 which uses the articles from our database limited to topics Economics (ECAT)
and Government/Social (GCAT) to prevent our prototype from learning soccer results or
stock quotations which are also part of the corpus.

Our first step required to build a OpenCalais client to automatically annotate our selected
articles. After registration at Thompson-Reuters, we got an API key which authorized us
to use the service. We limited the analysis of the articles to entities and relations because
our Stanford NLP prototype is not capable of classifying topics or social tags provided
by OpenCalais. The results of the extraction with OpenCalais are stored in table CALAIS,
which differentiates relations and entities by the type field containing <ENTITY> or <RE-
LATION> (see ER diagram in Section 3.2). The field key describes the content of field
value in more detail and contains one of the following item:

Anniversary City Company
Continent Country Currency

EmailAddress EntertainmentAwardEvent Facility
FaxNumber Holiday IndustryTerm
MarketIndex MedicalCondition MedicalTreatment

Movie MusicAlbum MusicGroup
NaturalFeature OperatingSystem Organization

Person PhoneNumber PoliticalEvent
Position Product ProgrammingLanguage

ProvinceOrState PublishedMedium RadioProgram
RadioStation Region SportsEvent
SportsGame SportsLeague Technology

TVShow TVStation URL

Figure 3.5: 39 different types of OpenCalais entities

6http://www.opencalais.com/
7Application Programming Interface

26

http://www.opencalais.com/

4 Evaluation

This chapter describes the used hardware equipment and presents the results achieved
with our prototype.

4.1 Test setup

For out tests, we used the software components described in Section 6.1. The hardware
for our tests was a Intel Core2Duo with 2 x 2,8 GHz and 8 GB DDR3 RAM. The extractor
requires a minimum of 3 GB RAM to run, so the Java Virtual Machine is generously set
to -Xmx5000m.

We started three different extraction tasks, the first with 10.000 articles, followed by
50.000 and finally 100.000 articles. The results are presented in Table 4.1:

10,000 Articles 50,000 Articles 100,000 Articles

Duration [min:sec.msec] 20:11.039 122:21.518 264:47.644
Speed - Articles/Second 8.264 6.849 6.329
Articles containing Relations 6,588 33,624 67,331
Number of Extracted Patterns 17,334 85,111 161,811
Number of Extracted Tuples 26,616 140,696 282,610

Figure 4.1: Extraction details

The extraction details show that the speed is decreasing with the number of articles
queried. The explanation is, that the number of database request increases because the
whole article set is split into packages of 5,000 (fetchsize). This setting limits the memory
usage and can be increased depending on the available hardware setup.

4.2 Extract Entities and Relations

First, to get a large amount of reference relations, OpenCalais worked roughly one day
and processed 59,562 articles receiving 1,521,348 entities and relations. The extraction
speed of the free client is limited by Thompson-Reuters. They provide commercial access,
which does not have these limitations.

27

In a second step our prototype extracted named entities and relations from the same ar-
ticles processed by OpenCalais. Stanford extracted entities matching ten different tags
(Table 4.2):

DATE LOCATION MISC
MONEY NUMBER ORDINAL

ORGANIZATION PERCENT PERSON
TIME

Figure 4.2: Ten different types of Stanford entities

While both systems use different keys (OpenCalais goes into more detail) and we are only
interested in ORGANIZATION, LOCATION and PERSON, we implemented database
table containing a mapping between these keys as shown in Table 4.3:

Stanford OpenCalais

LOCATION City
LOCATION Contintent
LOCATION Country
LOCATION ProvinceOrState
LOCATION Region

ORGANIZATION Company
ORGANIZATION Organization

PERSON Person

Figure 4.3: Entity type matching between Stanford NLP and OpenCalais

With this mapping stored in the database, it was possible to compare found entities from
OpenCalais with the matching ones from Stanford. But, as we found out after a detailed
analysis of the values extracted by Stanford and OpenCalais, OpenCalais entity types
would map to multiple Stanford entities which would lead into problems with our queries
calculating precision and recall. Therefore, the mapping was rejected, and the queries
compare the values of the three Stanford entities with any occurrence on Calais side.

Before we calculate recall and precision over all tagged articles, we look at one article in
more detail. As you can see from the SQL statements, the items found by Stanford are not
unique. So an article containing the location term Brazil twice will result in two database
entries. OpenCalais handles this problem by listing these entities only once. Since we are
not interested in the position of the found entity, but only in the fact, that both systems
found it at all, we reject duplicate entries. So the results are unified which is important
for the calculation of precision and recall.

Query the Stanford entities:

28

1 s e l e c t d i s t i n c t ne . a r t i c l e _ i d , ne . key , ne . va lue
2 from ne , mapping m
3 where ne . key in (’ORGANIZATION ’ , ’LOCATION ’ , ’PERSON ’)
4 and ne . a r t i c l e _ i d = 2286
5 order by ne . va lue ;

The result of the Stanford query (Table 4.4):

Article Key Value

2286 LOCATION Argentina
2286 PERSON Boni
2286 LOCATION Brazil
2286 ORGANIZATION Federal Reserve
2286 PERSON Felix Boni
2286 PERSON James Capel
2286 PERSON Lars Schonander
2286 ORGANIZATION Lehman Brothers
2286 PERSON Matthew Hickman
2286 LOCATION Mexico
2286 LOCATION Mexico City
2286 LOCATION New York
2286 LOCATION Santander
2286 LOCATION South American
2286 ORGANIZATION Treasury
2286 LOCATION U.S.

Figure 4.4: 16 entities found by Stanford in article 2286

Query the OpenCalais entities:

1 s e l e c t d i s t i n c t c . a r t i c l e _ i d , c . key , c . va lue
2 from c a l a i s c , mapping m
3 where c . t y p e = ’ENTITY ’
4 and c . a r t i c l e _ i d = 2286
5 order by c . va lue ;

The result of the OpenCalais query (Table 4.5):

As you can see from the results below, our prototype and OpenCalais find different entities
which will have a negative influence on precision and recall.

29

Article Key Value

2286 Country Argentina
2286 Country Brazil
2286 Person Felix Boni
2286 IndustryTerm gross domestic product
2286 Position head of research
2286 Position head of researcher
2286 Person Lars Schonander
2286 Company Lehman Brothers
2286 Person Matthew Hickman
2286 Country Mexico
2286 City Mexico City
2286 City New York
2286 Country United States
2286 Organization US Federal Reserve

Figure 4.5: 14 entities found by OpenCalais in article 2286

4.3 Precision and Recall of Entities

Precision is the fraction of the documents retrieved that are relevant to the user’s infor-
mation need1.

Recall is the fraction of the documents that are relevant to the query which have been
successfully retrieved2.

We not only present a single number for the entity precision and recall of all tagged
articles, but a distribution of the precision for all processed articles (58,148) (precision
Table 4.6, recall Table 4.6):

While checking these numbers, some problems became evident:

• Entities containing the ’&’ symbol are not stored correctly by Stanford NLP. E.g.
the company A.G. Edwards & Sons, Inc. is stored as A.G. Edwards& Sons, Inc.
with a missing space before ’&’, which would reduce precision. There are 10626
such problems in our database, which were corrected by an SQL statement:

1 update ne
2 s e t va lue = re ge xp \ _ r e p l a c e (value , ’& ’ , ’ & ’ , ’ g ’)
3 where ne . va lue ~ ’ . * \ \ w+ \ \ S\& \ \ w+ .* ’ ;
4 > Query OK, 10626 rows a f f e c t e d (0 0 : 0 1 : 3 3)

1http://en.wikipedia.org/wiki/Information_retrieval#Precision
2http://en.wikipedia.org/wiki/Information_retrieval#Recall

30

http://en.wikipedia.org/wiki/Information_retrieval#Precision
http://en.wikipedia.org/wiki/Information_retrieval#Recall

absolute relative distribution
precision = 1 2154 3,7043
1 > precision >= 0.9 371 0,6380
0.9 > precision >= 0.8 3,709 6,3785
0.8 > precision >= 0.7 8,317 14,3031
0.7 > precision >= 0.6 15,041 25,8667
0.6 > precision >= 0.5 15,350 26,3981
0.5 > precision >= 0.4 5,907 10,1585
0.4 > precision >= 0.3 3,543 6,0930
0.3 > precision >= 0.2 2,313 3,9777
0.2 > precision >= 0.1 1,098 1,8882
0.1 > precision >= 0 345 0,5933

Figure 4.6: Precision distribution of discovered entities by our prototype

absolute relative distribution
recall = 1 1,651 2,8393
1 > recall >= 0.9 339 0,5829
0.9 > recall >= 0.8 2,252 3,8728
0.8 > recall >= 0.7 4,521 7,7749
0.7 > recall >= 0.6 10,529 18,1072
0.6 > recall >= 0.5 16,481 28,3431
0.5 > recall >= 0.4 10,734 18,4597
0.4 > recall >= 0.3 6,648 11,4328
0.3 > recall >= 0.2 3,493 6,0070
0.2 > recall >= 0.1 1,288 2,2150
0.1 > recall >= 0 212 0,3645

Figure 4.7: Recall distribution of discovered entities by our prototype

31

• Some abbreviations are converted by OpenCalais to their long version. E.g. the
abbreviation U.S. is automatically converted and stored as United States. Stanford
NLP do not convert these items. Therefore we updated some of them by running
the following SQL Statements:

1 BEGIN ;
2

3 update ne s e t va lue = ’ U n i t e d S t a t e s ’
4 where va lue = ’U. S . ’ ;
5 update c a l a i s s e t va lue = ’ U n i t e d S t a t e s ’
6 where va lue = ’U. S . ’ and t y p e = ’ENTITY ’ ;
7

8 update ne s e t va lue = ’ European Union ’
9 where va lue = ’EU ’ ;

10 update c a l a i s s e t va lue = ’ European Union ’
11 where va lue = ’EU ’ and t y p e = ’ENTITY ’ ;
12

13 update ne s e t va lue = ’ U n i t e d N a t i o n s ’
14 where va lue = ’U.N. ’ ;
15 update c a l a i s s e t va lue = ’ U n i t e d N a t i o n s ’
16 where va lue = ’U.N. ’ and t y p e = ’ENTITY ’ ;
17

18 update ne s e t va lue = ’ Nor th A t l a n t i c T r e a t y O r g a n i z a t i o n ’
19 where va lue = ’NATO’ ;
20 update c a l a i s s e t va lue =
21 ’ Nor th A t l a n t i c T r e a t y O r g a n i z a t i o n ’
22 where va lue = ’NATO’ and t y p e = ’ENTITY ’ ;
23

24 update ne s e t va lue = ’ I n t e r n a t i o n a l Monetary Fund ’
25 where va lue = ’IMF ’ ;
26 update c a l a i s s e t va lue = ’ I n t e r n a t i o n a l Monetary Fund ’
27 where va lue = ’IMF ’ and t y p e = ’ENTITY ’ ;
28

29 update ne s e t va lue = ’ European Monetary Union ’
30 where va lue = ’EMU’ ;
31 update c a l a i s s e t va lue = ’ European Monetary Union ’
32 where va lue = ’EMU’ and t y p e = ’ENTITY ’ ;
33

34 update ne s e t va lue = ’ S t a n d a r d & Poor ’ ’ s ’
35 where va lue = ’S&P ’ ;
36 update c a l a i s s e t va lue = ’ S t a n d a r d & Poor ’ ’ s ’
37 where va lue = ’S&P ’ and t y p e = ’ENTITY ’ ;
38

39 update ne s e t va lue = ’ World Trade O r g a n i s a t i o n ’

32

40 where va lue = ’WTO’ ;
41 update c a l a i s s e t va lue = ’ World Trade O r g a n i s a t i o n ’
42 where va lue = ’TWO’ and t y p e = ’ENTITY ’ ;
43

44 update ne s e t va lue = ’ I s r a e l ’
45 where va lue = ’ I s r a e l i ’ and key = ’LOCATION ’ ;
46 update ne s e t va lue = ’ I r a q ’
47 where va lue = ’ I r a q i ’ and key = ’LOCATION ’ ;
48 update ne s e t va lue = ’ R u s s i a ’
49 where va lue = ’ R u s s i a n ’ and key = ’LOCATION ’ ;
50

51 COMMIT;

With these simple improvements, the distribution of our precision and recall improved
considerable (precision Table 4.8 & recall Table 4.9):

absolute relative distribution
precision = 1 2,509 4,3106
1 > precision >= 0.9 580 0,9964
0.9 > precision >= 0.8 4,951 8,5061
0.8 > precision >= 0.7 9,655 16,5879
0.7 > precision >= 0.6 15,264 26,2245
0.6 > precision >= 0.5 13,628 23,4137
0.5 > precision >= 0.4 4,868 8,3635
0.4 > precision >= 0.3 3,148 5,4084
0.3 > precision >= 0.2 2,206 3,7900
0.2 > precision >= 0.1 1,073 1,8434
0.1 > precision >= 0 323 0,5549

Figure 4.8: Precision distribution of entities after applying the updates

4.4 Precision and Recall of Relations

After comparing the entities of Stanford and OpenCalais to see how precise our prototype
works, we finally want to calculate the precision and recall of the relations extracted. To
improve our results we take advantage of a classifier, which is able to disable bad patterns
to improve our results.

Before we classified the patterns, the distribution of the results looks like (precision Table
4.10, recall Table 4.11):

33

absolute relative distribution
recall = 1 1,720 2,9550
1 > recall >= 0.9 396 0,6803
0.9 > recall >= 0.8 2,457 4,2212
0.8 > recall >= 0.7 5,055 8,6848
0.7 > recall >= 0.6 11,244 19,3179
0.6 > recall >= 0.5 16,529 28,3979
0.5 > recall >= 0.4 10,065 17,2923
0.4 > recall >= 0.3 6,032 10,3633
0.3 > recall >= 0.2 3,272 5,6215
0.2 > recall >= 0.1 1,248 2,1441
0.1 > recall >= 0 187 0,3212

Figure 4.9: Recall distribution of entities after applying the updates

absolute relative distribution
precision = 1 5,694 15.0119
1 > precision >= 0.9 150 0.3955
0.9 > precision >= 0.8 1,820 4.7983
0.8 > precision >= 0.7 2,471 6.5146
0.7 > precision >= 0.6 4,787 12.6206
0.6 > precision >= 0.5 7,065 18.6264
0.5 > precision >= 0.4 3,559 9.3831
0.4 > precision >= 0.3 4,659 12.2832
0.3 > precision >= 0.2 4,587 12.0933
0.2 > precision >= 0.1 2,457 6.4777
0.1 > precision >= 0 681 1.7954

Figure 4.10: Precision distribution of discovered relations

34

absolute relative distribution
recall = 1 1,216 3.2059
1 > recall >= 0.9 21 0.0554
0.9 > recall >= 0.8 378 0.9966
0.8 > recall >= 0.7 738 1.9457
0.7 > recall >= 0.6 2,091 5.5128
0.6 > recall >= 0.5 4,509 11.8877
0.5 > recall >= 0.4 4,675 12.3253
0.4 > recall >= 0.3 7,095 18.7055
0.3 > recall >= 0.2 8,491 22.386
0.2 > recall >= 0.1 6,573 17.3293
0.1 > recall >= 0 2,143 5.6499

Figure 4.11: Recall distribution of discovered relations

F1-score relative distribution
1 6,1754
0.9 0.1135
0.8 1.9290
0.7 3.5023
0.6 8.9691
0.5 16.9630
0.4 12.4536
0.3 17.3322
0.2 18.3544
0.1 11.0224
0 3.1849

Figure 4.12: F1-score distribution of discovered relations

35

Then the classifier was trained with the hand tagged patterns of the Pattern Inspector to
disable unqualified patterns. Finally precision and recall were recalculated without these
patterns (precision Table 4.13, recall Table 4.14):

absolute relative distribution difference
precision = 1 9,107 25.4499 59.9403
1 > precision >= 0.9 109 0.3046 -27.3333
0.9 > precision >= 0.8 2,021 5.6478 11.044
0.8 > precision >= 0.7 2,687 7.5089 8.7414
0.7 > precision >= 0.6 4,875 13.6234 1.8383
0.6 > precision >= 0.5 6,933 19.3746 -1.8684
0.5 > precision >= 0.4 2,515 7.0283 -29.3341
0.4 > precision >= 0.3 3,486 9.7418 -25.1771
0.3 > precision >= 0.2 2,858 7.9868 -37.6935
0.2 > precision >= 0.1 1,090 3.0461 -55.637
0.1 > precision >= 0 103 0.2878 -84.8752

Figure 4.13: Precision distribution of relations after applying the classifier

absolute relative distribution difference
recall = 1 790 2.2077 -35.0329
1 > recall >= 0.9 16 0.0447 -23.8095
0.9 > recall >= 0.8 275 0.7685 -27.2487
0.8 > recall >= 0.7 558 1.5594 -24.3902
0.7 > recall >= 0.6 1,595 4.4573 -23.7207
0.6 > recall >= 0.5 3,595 10.0464 -20.2706
0.5 > recall >= 0.4 3,998 11.1726 -14.4813
0.4 > recall >= 0.3 6,564 18.3434 -7.4841
0.3 > recall >= 0.2 8,601 24.0359 1.2955
0.2 > recall >= 0.1 7,190 20.0928 9.3869
0.1 > recall >= 0 2,602 7.2714 21.4186

Figure 4.14: Recall distribution of relations after applying the classifier

As you can see from the result tables, after applying the classifier and removing irrelevant
patterns, the number of totally matching patterns/article jumped up by 59%. But at the
same time, recall dropped by 35% in the high precision section. This reduces the number
of relations with the highest F1-score by 2.11%. Nevertheless, as Table 4.15 shows, there
is a overall movement from bad F1-scores (0 - 0.2) to better F1-scores (0.3 and above).
A grafical comparison between the F1-scores is available in Figure 4.16. Based on this

36

F1-score relative distribution difference
1 6.0449 -2.1135
0.9 0.116 2.1925
0.8 2.0129 4.3490
0.7 3.8422 9.7045
0.6 9.9936 11.4224
0.5 19.6864 16.0545
0.4 12.8378 3.0856
0.3 18.9331 9.2364
0.2 17.8384 -2.8115
0.1 7.8708 -28.5930
0 0.8239 -74.1316

Figure 4.15: F1-score distribution of relations after applying the classifier

results, we affirm, that our method of designing a generic relation extraction system is
suitable.

Finally, we contrast precision with recall (see Table 4.17) to get the following PR-curve
(Figure 4.18). It characterizes the quality of the classifier which is limited by the overall
low recall in our case:

37

Figure 4.16: Comparison of F1-scores with and without using a classifier

pattern probability recall precision
0.8 < x < 0.9 0.1321 0.9769
0.5 < x < 0.6 0.1357 0.9060
x < 0.1 0.1596 0.6190
x < 0.08 0.1592 0.3921
x = 0 0.3532 0

Figure 4.17: PR-curve calculations

38

Figure 4.18: PR-curve of the classified patterns

39

5 Conclusions and Future Work

In previous work, different algorithms have been applied to pattern learning. From fre-
quency based (e.g. DIPRE, Section 2.1) over weighting the surrounding context (e.g.
SNOWBALL, Section 2.4) to the usage of sophisticated mathematical models like Markov
models or CRF (e.g. O-CRF Section 2.3). Furthermore, DIPRE does not use NLP like
POS or NER, others take advantage of them. Nevertheless, most systems have the same
problems when it comes to recall and precision. While this systems should work at Web
scale it is hard to estimate their effectiveness which depends on many parameters. The
supplied corpus, the relation definition or the quality of the used NLP tools influences the
extracting patterns and tuples. Nevertheless, we provided a way to extract entities and
their relations in a fast way by using POS tagging and NER using an existing and actively
managed NLP package. With the further usage of our relation extraction tool, qualified
patterns will divergent against a maximum number of possible patterns because of the
limited number of Penn Treebank tags and the number of tokens used in our representa-
tion of relations. Therefore, a set of good, domain-independent patterns will be defined.
The usage of the classifier reduces manual work - especially at Web scale - but it also
reduces the recall. So the classifier should receive more attention in comparable systems.

As we can see from the PR-curve the recall is limited to 15% whereas the precision is
above 90% for patterns marked positive with a probability of more than 50%. After
investigating the results, we have to say, that our system is limited to relations between
entities by design, OpenCalais is not. Thompson-Reuters service finds relations between
entities, entities and co-references as well as statements with only one entity. Co-reference
resolution is implemented in the StanfordNLP package, but crashes every one a while
so, we are waiting for a new version of the API to get it tested again. Furthermore,
OpenCalais does not retrieve all relations existing in the articles, which reduces the recall
too. Hand tagged relations or another, more complete extraction system would improve
the recall further.

Nevertheless, our prototype was capable of processing 100.000 articles in roughly 5 hours
on a dual core CPU with a memory footprint of 5 GB RAM (see Section 4.1). The
software included is licensed under GNU GPL v2 and is allowed to use for research
purposes, free software projects, Although Sergei Brin said in 1998 that 20% of recall
would be acceptable whereas the precision less than 90% would not, we are confident that
improvements are possible after implementation of the points mentioned.

40

6 Appendix

6.1 Setup of the Software Environment

This section describes the installation and deployment of our prototype. We will only
discuss the most important steps here, additional information can be directly taken from
the source code of the prototype.

6.1.1 Introduction

By selecting Java as our developing language and Stanford CoreNLP as NLP package, we
explicitly take advantage of the following main software components for our development
platform (development was split into Microsoft Windows 7 x86 64 Bit and Ubuntu 10.10
64 Bit platform):

• Oracle Java Development Kit1 version 1.6.0-b23 (required)

• PostgreSQL2 Database version 9.0.3-1 (required)

• Stanford CoreNLP3 version 1.0.3 (required)

• Stanford Classifier4 version 2.1.1 (required)

• PostgreSQL JDBC4 Driver5 version 8.4 build 701-2 (required)

• Eclipse6 Helios (3.6.1) Integrated Development Environment (IDE) (additional)

• Git7 version control system (additional)

• EGit8 a Eclipse integration of Git (additional)

Some of the software components come with installer packages, which makes it easy to
install these on your preferred platform. Especially for the installation of the PostgreSQL

1http://www.oracle.com/technetwork/java/index.html
2http://www.postgresql.org/
3http://nlp.stanford.edu/software/corenlp.shtml
4http://nlp.stanford.edu/software/classifier.shtml
5http://jdbc.postgresql.org/
6http://www.eclipse.org/
7http://git-scm.com/
8http://www.eclipse.org/egit/

41

http://www.oracle.com/technetwork/java/index.html
http://www.postgresql.org/
http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/classifier.shtml
http://jdbc.postgresql.org/
http://www.eclipse.org/
http://git-scm.com/
http://www.eclipse.org/egit/

database and the Java Development Kit (version 6 build 23) (JDK) are excellent guides
available on-line.

The setup routine for the PostgreSQL JDBC4 Driver is topic of Section 6.1.2 followed
by the initialization of the article database (Section 6.1.3). Finally, the installation of the
selected NLP Package is covered in Section 6.1.4.

6.1.2 Java Database Connectivity (JDBC) driver

Start the PostgreSQL installer and follow the instructions. After finishing the installation
routine, it starts a wizard for additional plug-in selection. In this dialog look for the
PostgreSQL JDBC driver and select it (see Figure 6.1).

Figure 6.1: PostgreSQL Application stack builder - install JDBC driver

The JDBC driver will now be located in the selected directory. In case you already have
PostgreSQL installed, the JDBC driver is also available for separate download9.

6.1.3 Create User and Database

To work with PostgreSQL create a role and a database to work with. You can also recycle
an existing one. First, create the log-in role:

9http://jdbc.postgresql.org/download.html

42

http://jdbc.postgresql.org/download.html

1 CREATE ROLE j0125536 LOGIN PASSWORD ’ j0125536 ’
2 SUPERUSER CREATEDB CREATEROLE VALID UNTIL ’ i n f i n i t y ’ ;

Now the database can be created. The just created role will be the owner of the new
database:

1 CREATE DATABASE " j0125536 "
2 WITH ENCODING= ’UTF8 ’
3 OWNER= j0125536 ;

The Reuters articles are already available as an SQL script, so the import should start with
running the following statement on a command line:

1 > p s q l −d j0125536 −U j0125536 −f r e u t e r s . s q l

The parameters are:

• -d j0125536 selects the database to insert the articles in

• -U j0125536 selects the user with which the statements should be executed

• -f reuters.sql the path to the SQL script containing the articles

After successfully loading the articles, the database should look like:

1 L i s t o f r e l a t i o n s
2 Schema | Name | Type | Owner
3 −−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−
4 p u b l i c | a r t i c l e | t a b l e | j0125536
5 p u b l i c | a r t i c l e _ a r t i c l e _ i d _ s e q | s e q u e n c e | j0125536
6 p u b l i c | a r t i c l e _ i n d u s t r y | t a b l e | j0125536
7 p u b l i c | a r t i c l e _ r e g i o n | t a b l e | j0125536
8 p u b l i c | a r t i c l e _ t o p i c | t a b l e | j0125536
9 p u b l i c | i n d u s t r y | t a b l e | j0125536

10 p u b l i c | r e g i o n | t a b l e | j0125536
11 p u b l i c | t o p i c | t a b l e | j0125536
12 p u b l i c | v w _ a r t i c l e _ r e g i o n | view | j0125536
13 (9 rows)

Run the following statement and compare the results:

1 p s q l −d j0125536 −U j0125536 −c " s e l e c t c o u n t (1) from a r t i c l e ; "

1 c o u n t
2 −−−−−−−−
3 806791
4 (1 row)

43

6.1.4 Natural Language Processing (NLP) Package

Implementation of this prototype would be possible with different software packages,
capable of processing text in the desired manner (sentence splitting, tokenization, lemma
generation, POS and NER tagging). Three considered packages are available under open
licenses (usage and distribution is at least free for research purposes) and are written in
Java:

• Stanford CoreNLP10 is a suite of NLP tools, containing tools to handle English
text. It is available in Version 1.0.3 under full GPL and ”is designed to be highly
flexible and extensible” [12].

• LingPipe 4.0.111 is available for free under Royalty Free License as well as profes-
sional licenses for enterprises. ”LingPipe’s architecture is designed to be efficient,
scalable, reusable, and robust” [19]. It provides models trained on different cor-
pora for download and a comprehensive documentation.

• MALLET12 stands for MAchine Learning for LanguagE Toolkit written by An-
drew McCallum at the University of Massachusetts and is available under Common
Public License. Java API documentation and some tutorials are available, but doc-
umentation in general seems kind of fragmented. Nevertheless, MALLET includes
statistical natural language processing, document classification, clustering, topic
modeling, information extraction, and other machine learning applications” [20].

Download the required libraries from the provided website and add the location path to
your Java class-path.

6.2 Implementation

The topic of this section is the implementation of the design parts of Figure 3.1. We pick
some of the key parts from code and explain these. Please look at the documented source
code for deeper investigation.

We start with implementation details of the Database (Section 6.2.1) followed by the
design parts of the NLP Package containing Relation Extractor (Section 6.2.2), Pattern
Inspector (Section 6.2.3) and finally Pattern Classifier (Section 6.2.4).

6.2.1 Database

To run the prototype, the following tables are required in the database.

10http://nlp.stanford.edu/software/corenlp.shtml
11http://alias-i.com/lingpipe/index.html
12http://mallet.cs.umass.edu/

44

http://nlp.stanford.edu/software/corenlp.shtml
http://alias-i.com/lingpipe/index.html
http://mallet.cs.umass.edu/

Create now the tables and views for storing the extracted entities, patterns and tuples.
Start with table pattern first because the primary key pattern_id is used in a foreign key
constraint of table tuple:

1 CREATE TABLE " p u b l i c " . " p a t t e r n " (
2 " p a t t e r n _ i d " SERIAL ,
3 " l e f t " VARCHAR(2 5 5) ,
4 " ne1 " VARCHAR(2 5 5) ,
5 " midd le " VARCHAR(2 5 5) ,
6 " ne2 " VARCHAR(2 5 5) ,
7 " r i g h t " VARCHAR(2 5 5) ,
8 " i t e r a t i o n " INTEGER NOT NULL,
9 " e n a b l e d " BOOLEAN DEFAULT true NOT NULL,

10 " m o d i f i e r " CHAR(1) ,
11 CONSTRAINT " p a t t e r n _ p k e y " PRIMARY KEY(" p a t t e r n _ i d ") ,
12 CONSTRAINT " p a t t e r n _ u n i q u e _ p a t t e r n _ i d x "
13 UNIQUE(" l e f t " , " ne1 " , " midd le " , " ne2 " , " r i g h t ")
14) WITHOUT OIDS ;

16 CREATE INDEX " p a t t e r n _ e n a b l e d _ i d x " ON " p u b l i c " . " p a t t e r n "
17 USING b t r e e (" e n a b l e d ") ;

19 CREATE INDEX " p a t t e r n _ m o d i f i e r _ i d x " ON " p u b l i c " . " p a t t e r n "
20 USING b t r e e (" m o d i f i e r ") ;

22 CREATE INDEX " p a t t e r n _ n e 1 _ i d x " ON " p u b l i c " . " p a t t e r n "
23 USING b t r e e (" ne1 ") ;

25 CREATE INDEX " p a t t e r n _ n e 2 _ i d x " ON " p u b l i c " . " p a t t e r n "
26 USING b t r e e (" ne2 ") ;

This table contains the part-of-speech representation of discovered tuples. Therefor it is
similar to table tuple below.

Important for this table is the creation of a unique key constraint (line 12-13) because
it protects us from inserting identical rows in table pattern. We anticipate that many
identical patterns will be discovered, depending on the number and the domain of the
articles. So each insert statement during the extraction process has to recover from a
unique key constraint violation (see Section 6.2.2).

Continue with table tuple:

1 CREATE TABLE " p u b l i c " . " t u p l e " (
2 " t u p l e _ i d " SERIAL ,
3 " a r t i c l e _ i d " INTEGER NOT NULL,
4 " p a t t e r n _ i d " INTEGER NOT NULL,

45

5 " l e f t " VARCHAR(2 5 5) ,
6 " ne1 " VARCHAR(2 5 5) ,
7 " midd le " VARCHAR(2 5 5) ,
8 " ne2 " VARCHAR(2 5 5) ,
9 " r i g h t " VARCHAR(2 5 5) ,

10 " i t e r a t i o n " INTEGER NOT NULL,
11 CONSTRAINT " t u p l e _ p k e y " PRIMARY KEY(" t u p l e _ i d ") ,
12 CONSTRAINT " t u p l e _ a r t i c l e _ i d _ f k e y " FOREIGN KEY (" a r t i c l e _ i d ")
13 REFERENCES " p u b l i c " . " a r t i c l e " (" a r t i c l e _ i d ")
14 ON DELETE NO ACTION
15 ON UPDATE NO ACTION
16 NOT DEFERRABLE,
17 CONSTRAINT " t u p l e _ p a t t e r n _ i d _ f k e y " FOREIGN KEY (" p a t t e r n _ i d ")
18 REFERENCES " p u b l i c " . " p a t t e r n " (" p a t t e r n _ i d ")
19 ON DELETE NO ACTION
20 ON UPDATE NO ACTION
21 NOT DEFERRABLE
22) WITHOUT OIDS ;

24 CREATE INDEX " t u p l e _ a r t i c l e _ i d _ i d x " ON " p u b l i c " . " t u p l e "
25 USING b t r e e (" a r t i c l e _ i d ") ;

27 CREATE INDEX " t u p l e _ n e 1 _ i d x " ON " p u b l i c " . " t u p l e "
28 USING b t r e e (" ne1 ") ;

30 CREATE INDEX " t u p l e _ n e 2 _ i d x " ON " p u b l i c " . " t u p l e "
31 USING b t r e e (" ne2 ") ;

33 CREATE INDEX " t u p l e _ p a t t e r n _ i d _ i d x " ON " p u b l i c " . " t u p l e "
34 USING b t r e e (" p a t t e r n _ i d ") ;

This table will store all concrete relations discovered by the extractor. Each row is tied to
a pattern and a article in which the relation occurs. The additional indices are by reason
of performance.

For a more intuitive handling of the extracted patterns, we packaged some logic into
views. A view in SQL is a predefined select statement that is executed each time the view
is called.

The view v_pattern_tuple_frequency selects all patterns and counts how many tuples are
generated by each pattern (frequency). The result is order by frequency descending:

1 CREATE VIEW " p u b l i c " . " v _ p a t t e r n _ t u p l e _ f r e q u e n c y " (
2 f r e q u e n c y ,
3 p a t t e r n _ i d ,

46

4 " l e f t " ,
5 ne1 ,
6 middle ,
7 ne2 ,
8 " r i g h t " ,
9 enab led ,

10 m o d i f i e r)
11 AS
12 SELECT count (t u p l e . t u p l e _ i d) AS f r e q u e n c y ,
13 t u p l e . p a t t e r n _ i d , p a t t e r n . " l e f t " ,
14 p a t t e r n . ne1 , p a t t e r n . middle , p a t t e r n . ne2 ,
15 p a t t e r n . " r i g h t " , p a t t e r n . enab led ,
16 p a t t e r n . m o d i f i e r
17 FROM t u p l e , p a t t e r n
18 WHERE t u p l e . p a t t e r n _ i d = p a t t e r n . p a t t e r n _ i d
19 AND (p a t t e r n . ne1 in (’ORGANIZATION ’ , ’PERSON ’ , ’LOCATION ’)
20 AND (p a t t e r n . ne2 in (’ORGANIZATION ’ , ’PERSON ’ , ’LOCATION ’)
21 GROUP BY t u p l e . p a t t e r n _ i d , p a t t e r n . " l e f t " , p a t t e r n . ne1 ,
22 p a t t e r n . middle , p a t t e r n . ne2 , p a t t e r n . " r i g h t " ,
23 p a t t e r n . enab led , p a t t e r n . m o d i f i e r
24 ORDER BY count (t u p l e . t u p l e _ i d) DESC ;

For storage of reference entities and relations of OpenCalais Viewer, the following table
is required:

1 CREATE TABLE " p u b l i c " . " c a l a i s " (
2 " c a l a i s _ i d " SERIAL ,
3 " a r t i c l e _ i d " INTEGER NOT NULL,
4 " key " VARCHAR(2 5 5) NOT NULL,
5 " v a l u e " VARCHAR(2 5 5) NOT NULL,
6 " t y p e " VARCHAR(2 0) NOT NULL,
7 CONSTRAINT " c a l a i s _ p k e y _ i d x " PRIMARY KEY(" c a l a i s _ i d ") ,
8 CONSTRAINT " c a l a i s _ a r t i c l e _ f k " FOREIGN KEY (" a r t i c l e _ i d ")
9 REFERENCES " p u b l i c " . " a r t i c l e " (" a r t i c l e _ i d ")

10 ON DELETE NO ACTION
11 ON UPDATE NO ACTION
12 NOT DEFERRABLE
13) WITHOUT OIDS ;

15 ALTER TABLE " p u b l i c " . " c a l a i s "
16 ALTER COLUMN " c a l a i s _ i d " SET STATISTICS 0 ;

18 ALTER TABLE " p u b l i c " . " c a l a i s "
19 ALTER COLUMN " a r t i c l e _ i d " SET STATISTICS 0 ;

47

21 CREATE INDEX " c a l a i s _ a r t i c l e _ i d _ i d x " ON " p u b l i c " . " c a l a i s "
22 USING b t r e e (" a r t i c l e _ i d ") ;

24 CREATE INDEX " c a l a i s _ k e y _ i d x " ON " p u b l i c " . " c a l a i s "
25 USING b t r e e (" key ") ;

27 CREATE INDEX " c a l a i s _ v a l u e _ i d x " ON " p u b l i c " . " c a l a i s "
28 USING b t r e e (" v a l u e ") ;

The last table required will contain the entities extracted by the Stanford NLP Package:

1 CREATE TABLE " p u b l i c " . " ne " (
2 " n e _ i d " SERIAL ,
3 " a r t i c l e _ i d " INTEGER NOT NULL,
4 " s e n t e n c e " INTEGER NOT NULL,
5 " p o s i t i o n " INTEGER NOT NULL,
6 " key " VARCHAR(2 5 5) NOT NULL,
7 " v a l u e " VARCHAR(2 5 5) NOT NULL,
8 CONSTRAINT " ne_pk " PRIMARY KEY(" n e _ i d ") ,
9 CONSTRAINT " n e _ a r t i c l e _ f k " FOREIGN KEY (" a r t i c l e _ i d ")

10 REFERENCES " p u b l i c " . " a r t i c l e " (" a r t i c l e _ i d ")
11 ON DELETE NO ACTION
12 ON UPDATE NO ACTION
13 NOT DEFERRABLE
14) WITHOUT OIDS ;

16 CREATE INDEX " n e _ a r t i c l e _ i d _ i d x " ON " p u b l i c " . " ne "
17 USING b t r e e (" a r t i c l e _ i d ") ;

19 CREATE INDEX " ne_key_ idx " ON " p u b l i c " . " ne "
20 USING b t r e e (" key ") ;

22 CREATE INDEX " n e _ v a l u e _ i d x " ON " p u b l i c " . " ne "
23 USING b t r e e (" v a l u e ") ;

Finally, after running all SQL statements on your database, your current schema for
should look like this:

1 L i s t o f r e l a t i o n s
2 Schema | Name | Type | Owner
3 −−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−+−−−−−−−−−−−−
4 p u b l i c | a r t i c l e | t a b l e | j0125536
5 p u b l i c | a r t i c l e _ a r t i c l e _ i d _ s e q | s e q u e n c e | j0125536
6 p u b l i c | a r t i c l e _ i n d u s t r y | t a b l e | j0125536

48

7 p u b l i c | a r t i c l e _ r e g i o n | t a b l e | j0125536
8 p u b l i c | a r t i c l e _ t o p i c | t a b l e | j0125536
9 p u b l i c | c a l a i s | t a b l e | j0125536

10 p u b l i c | c a l a i s _ c a l a i s _ i d _ s e q | s e q u e n c e | j0125536
11 p u b l i c | i n d u s t r y | t a b l e | j0125536
12 p u b l i c | ne | t a b l e | j0125536
13 p u b l i c | n e _ n e _ i d _ s e q | s e q u e n c e | j0125536
14 p u b l i c | p a t t e r n | t a b l e | j0125536
15 p u b l i c | p a t t e r n _ p a t t e r n _ i d _ s e q | s e q u e n c e | j0125536
16 p u b l i c | r e g i o n | t a b l e | j0125536
17 p u b l i c | t o p i c | t a b l e | j0125536
18 p u b l i c | t u p l e | t a b l e | j0125536
19 p u b l i c | t u p l e _ t u p l e _ i d _ s e q | s e q u e n c e | j0125536
20 p u b l i c | v _ p a t t e r n _ t u p l e _ f r e q u e n c y | View | j0125536
21 p u b l i c | v w _ a r t i c l e _ r e g i o n | View | j0125536
22 (18 Z e i l e n)

6.2.2 Relation Extractor

In this subsection we present some key parts of the implementation of the relation extrac-
tor.

1 p r i v a t e StanfordCoreNLP i n i t S t a n f o r d N L P ()
2 {
3 P r o p e r t i e s p r o p s = new P r o p e r t i e s () ;
4 p r o p s . p u t (" a n n o t a t o r s " , " t o k e n i z e , s s p l i t , pos , lemma ,

ner , r e g e x n e r ") ;
5 p r o p s . p u t (" r e g e x n e r . i g n o r e c a s e " , " t r u e ") ;
6 StanfordCoreNLP p i p e l i n e = new StanfordCoreNLP (p r o p s) ;
7 s e t S t a r t T i m e (System . c u r r e n t T i m e M i l l i s ()) ;
8 re turn p i p e l i n e ;
9 }

This function sets the required environment for the execution of the NLP task like tok-
enization, sentence splitting, POS tagging, lemma generation, NER and regnexer (Section
3.2.1). The properties defined in line 3 includes all settings required for the Stanford-
CoreNLP class.

1 C o n n e c t i o n conn = e x t r a c t o r . connectDB () ;
2 TreeMap <Long , S t r i n g > i n p u t = e x t r a c t o r . r e a d A r t i c l e s (conn ,

e x t r a c t o r . g e t F i r s t A r t i c l e I D ()) ;

The connection to the database is established by calling the method connectDB() in line
1. Reading the articles is executed in line 2. All found articles within the fetch-size are

49

returned to the TreeMap for further iteration.

1 f o r (CoreLabe l t o k e n : s e n t e n c e . g e t (T o k e n s A n n o t a t i o n . c l a s s))
2 {
3 t h i s . getFeatureWORD () . add (t o k e n . g e t (T e x t A n n o t a t i o n . c l a s s

)) ;
4 t h i s . g e tFea tu r ePOS () . add (t o k e n . g e t (

P a r t O f S p e e c h A n n o t a t i o n . c l a s s)) ;
5 t h i s . ge tFea tureNER () . add (t o k e n . g e t (

NamedEnt i tyTagAnno ta t ion . c l a s s)) ;
6 t h i s . getFeatureLEMMA () . add (t o k e n . g e t S t r i n g (

LemmaAnnotation . c l a s s)) ;
7 }
8 t h i s . e x t r a c t R e l a t i o n s (conn , a r t i c l e _ i d , t h i s . ge tFea tureNER () ,

t h i s . g e tFea tu r ePOS () , t h i s . getFeatureWORD ()) ;

Inside the article loop, the method analyzeArticle() is called. This is a part of this method,
analyzing each token of a sentence in lines 1-7. Finally, the relation candidates are ex-
tracted for each sentence in line 8.

1 p u b l i c vo id e x t r a c t R e l a t i o n s (C o n n e c t i o n conn , i n t a r t i c l e _ i d ,
Vector < S t r i n g > featureNER , Vector < S t r i n g > fea tu rePOS , Vector <
S t r i n g > featureWORD)

2 {
3 Vector <NamedEnti ty > e n t i t i e s = t h i s . f i n d N a m e d E n t i t i e s () ;
4 i f (e n t i t i e s . s i z e () > 1)
5 {
6 R e l a t i o n r = n u l l ;
7 f o r (i n t i = 0 ; i < e n t i t i e s . s i z e () − 1 ; i ++)
8 {
9 r = R e l a t i o n . c r e a t e R e l a t i o n (featureNER ,

e n t i t i e s . g e t (i) , e n t i t i e s . g e t (i + 1))
;

10 i f (r != n u l l)
11 s t o r e R e l a t i o n T o D B (conn , r ,

a r t i c l e _ i d , fea tu rePOS ,
featureWORD) ;

12 }
13 }
14 }

For each sentence the method extractRelations() is called with the POS tags, NER anno-
tation and the plain words of the article. While the named entities can consist of more
than one word, the function findNamedEntities() in line 3 concatenates these words and
returns them. If there is more than one entity in the sentence, a relation candidate can be

50

extracted in line 9. In the case of successfully extracting a relation, it will be stored in line
11. Iterating through the loop in the line 7-12 the method will find all possible relation
between each pair of entity: 1-2, 2-3, 3-4

1 R e s u l t S e t r s = n u l l ;
2 t r y
3 {
4 p s t m t P a t t e r n . s e t S t r i n g (1 , r . g e t L e f t () . t o S t r i n g (f e a t u r e P O S)) ;
5 p s t m t P a t t e r n . s e t S t r i n g (2 , ((NamedEnt i ty) r . getNe1 ()) . getNeTyp ()

) ;
6 p s t m t P a t t e r n . s e t S t r i n g (3 , r . g e t M i d d l e () . t o S t r i n g (f e a t u r e P O S)) ;
7 p s t m t P a t t e r n . s e t S t r i n g (4 , ((NamedEnt i ty) r . getNe2 ()) . getNeTyp ()

) ;
8 p s t m t P a t t e r n . s e t S t r i n g (5 , r . g e t R i g h t () . t o S t r i n g (f e a t u r e P O S)) ;
9 p s t m t P a t t e r n . s e t I n t (6 , g e t I t e r a t i o n ()) ;

10 r e s u l t = p s t m t P a t t e r n . e x e c u t e U p d a t e () ;
11 i f (r e s u l t == 1)
12 {
13 r s = p s t m t P a t t e r n . g e t G e n e r a t e d K e y s () ;
14 i f (r s != n u l l && r s . n e x t ())
15 p a t t e r n _ i d = r s . g e t I n t (1) ;
16 }
17 }
18 catch (SQLException e)
19 {
20 i f (e . ge tSQLSta t e () . e q u a l s (" 23505 "))
21 {
22 c . r o l l b a c k () ;
23 p s t m t S e l e c t . s e t S t r i n g (1 , r . g e t L e f t () . t o S t r i n g (f e a t u r e P O S

)) ;
24 p s t m t S e l e c t . s e t S t r i n g (2 , ((NamedEnt i ty) r . getNe1 ()) .

getNeTyp ()) ;
25 p s t m t S e l e c t . s e t S t r i n g (3 , r . g e t M i d d l e () . t o S t r i n g (

f e a t u r e P O S)) ;
26 p s t m t S e l e c t . s e t S t r i n g (4 , ((NamedEnt i ty) r . getNe2 ()) .

getNeTyp ()) ;
27 p s t m t S e l e c t . s e t S t r i n g (5 , r . g e t R i g h t () . t o S t r i n g (

f e a t u r e P O S)) ;
28 r s = p s t m t S e l e c t . e x e c u t e Q u e r y () ;
29 i f (r s != n u l l && r s . n e x t ())
30 p a t t e r n _ i d = r s . g e t I n t (1) ;
31 }
32 e l s e
33 {

51

34 e . p r i n t S t a c k T r a c e () ;
35 }
36 }

Finally, the patterns become stored inside the method storeRelationToDB. We are using
prepared statements (because of performance benefits) to insert the pattern (lines 4-10).
If the insert is successful the result will become 1 and the serial number generated for the
primary key pattern_id will be stored in line 15. In case the insert fails, the exception will
be caught in line 18. If it fails because of an unique key constraint violation (line 19) the
pattern is selected from the database and the corresponding pattern_id is stored in line 30.
Should the select statement fail too, the exception is print to the command-line and this
pattern and its tuple is skipped and not inserted into the database.

6.2.3 Pattern Inspector

The GUI of the Pattern Inspector consists of three filterable tables that depend on each
other. So the application is relatively simple while there is only one database update:
Disable or enable a pattern. Filtering of the tables is achieved by using the class RowFilter
which is already part of Java 1.5. The usage of the application is explained in Section 6.3.

6.2.4 Pattern Classifier

The Linear Stanford classifier is used to mark all extracted patterns as positive or negative
depending on a hand tagged set of patterns. To do so, we have to train the classifier with
the training data (hand tagged patterns) generated by the Pattern Inspector (Section 6.3).
Each training pattern is encapsulated into a BasicDatum object consisting of multiple
features and a label:

1 f e a t u r e s = new A r r a y L i s t < S t r i n g > () ;
2 f e a t u r e s . add (r s . g e t S t r i n g (1)) ; / / p a t t e r n . l e f t
3 f e a t u r e s . add (r s . g e t S t r i n g (2)) ; / / p a t t e r n . ne1
4 f e a t u r e s . add (r s . g e t S t r i n g (3)) ; / / p a t t e r n . m i dd l e
5 f e a t u r e s . add (r s . g e t S t r i n g (4)) ; / / p a t t e r n . ne2
6 f e a t u r e s . add (r s . g e t S t r i n g (5)) ; / / p a t t e r n . r i g h t
7 t r a i n i n g S e t . add (new BasicDatum (f e a t u r e s , Boolean . va lueOf (r s .

g e t B o o l e a n (6)))) ; / / t r u e or f a l s e

After learning we apply the classifier to the remaining, not marked patterns by create a
BasicDatum and read the most likely class it would assign:

1 e n a b l e d = c l a s s i f i e r . c l a s s O f (new BasicDatum (f e a t u r e s , n u l l)) ;

52

The returning value is stored into the database to the specific pattern to enable or disable
it.

6.3 Using the Pattern Inspector

After finishing the extraction tasks, the Pattern Inspector displays the discovered patterns
and tuples. In the pattern view, we sorted by tuple frequency and found out, that some
bogus tuples have raised the frequency of bad patterns. Understandably, not all extracted
tuples are qualified relations but there were some relation between the extracted entities,
we did not expect. The corresponding patterns will therefor disabled in the PatternInspec-
tor GUI in Figure 6.2.

Because of this result, an automatic pattern learner based on the frequency would dis-
tract further extractions. Because of this fact, there is no implementation of an automatic
learner in the application, but within some minutes, the number of bogus tuples was man-
ually reduced by roughly 180,000 (Figure 6.3). While disabling of the bad patterns was
really fast, the patterns will not be compared during the extraction process. Each further
SQL transaction would reduce the extraction speed. For querying the results, join the
pattern table with the tuples and remove the disabled patterns. This action can be adjusted
in the Pattern Inspector which was highly helpful to disable the bogus patterns.

As Figure 6.3 shows, before disabling bogus patterns, the row count of the tuples was
449,992 rows whereas after disabling them only 274,464 returned.

To compare our results, we used the Reuters CalaisViewer13 to compare our precision
(Figure 6.4:

The first part (1) of Figure 6.4 shows the result OpenCalais return for tagging the supplied
article. The recognized entities are underlined. OpenCalais also resolved co-references
for Makoto Tonoki twice. The second part (2) shows the article in the Pattern Inspector
whereas (3) displays the extracted tuples of the article. The phrase ”Tokyo that gold
could rise if President Bill Clinton” does not constitute a relation because our defined
maximum distance is six words. These entities are seven words apart. Nevertheless, all
other relations depending on our definition (distance <= six words) were identified.

6.4 Penn Treebank Annotation Tags

Alphabetical list of part-of-speech tags used in the Penn Treebank Project14 (Table 6.5:

13http://viewer.opencalais.com/
14http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_

pos.html

53

http://viewer.opencalais.com/
http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

Figure 6.2: Pattern Inspector displaying patterns (1) and corresponding tuples (2); the
signature of the Reuters articles pushing the patterns (e.g. ”– David Chance,
London Newsroom +44 171 542 5887”)

54

Figure 6.3: Pattern Inspector showing the difference between all (1) and disabled patterns
(2)

55

Figure 6.4: CalaisViewer (1) in comparison to the Pattern Inspector: article (2), tuple (3)
and pattern (4) view

56

Number Tag Description

1. CC Coordinating conjunction
2. CD Cardinal number
3. DT Determiner
4. EX Existential there
5. FW Foreign word
6. IN Preposition or subordinating conjunction
7. JJ Adjective
8. JJR Adjective, comparative
9. JJS Adjective, superlative
10. LS List item marker
11. MD Modal
12. NN Noun, singular or mass
13. NNS Noun, plural
14. NNP Proper noun, singular
15. NNPS Proper noun, plural
16. PDT Predeterminer
17. POS Possessive ending
18. PRP Personal pronoun
19. PRP$ Possessive pronoun
20. RB Adverb
21. RBR Adverb, comparative
22. RBS Adverb, superlative
23. RP Particle
24. SYM Symbol
25. TO to
26. UH Interjection
27. VB Verb, base form
28. VBD Verb, past tense
29. VBG Verb, gerund or present participle
30. VBN Verb, past participle
31. VBP Verb, non-3rd person singular present
32. VBZ Verb, 3rd person singular present
33. WDT Wh-determiner
34. WP Wh-pronoun
35. WP$ Possessive wh-pronoun
36. WRB Wh-adverb

Figure 6.5: Penn Treebank Annotation Tags

57

List of Figures

2.1 DIPRE flowchart . 4
2.2 Error rate comparison: 33% lower than with KNOWITALL [5] 8
2.3 ”Taxonomy of Binary Relationships: Nearly 95% of 500 randomly se-

lected sentences belongs to one of the eight categories above” [7] 9
2.4 Open Extraction by Relation Category: O-CRF has increased recall and

precision compared to O-NB [7] . 10
2.5 Comparison of precision and recall between O-CRF and a traditional re-

lation extraction system R1-CRF [7] . 11
2.6 SNOWBALL’s main components [9] . 12
2.7 Example of generated tags by SNOWBALL [9] 12
2.8 STATSNOWBALL’s main components [10] 14

3.1 Model of our relation extraction system 19
3.2 ER diagram for the prototype . 23
3.3 Java GUI of the Pattern Inspector . 24
3.4 Confusion matrix of the classifier . 25
3.5 39 different types of OpenCalais entities 26

4.1 Extraction details . 27
4.2 Ten different types of Stanford entities 28
4.3 Entity type matching between Stanford NLP and OpenCalais 28
4.4 16 entities found by Stanford in article 2286 29
4.5 14 entities found by OpenCalais in article 2286 30
4.6 Precision distribution of discovered entities by our prototype 31
4.7 Recall distribution of discovered entities by our prototype 31
4.8 Precision distribution of entities after applying the updates 33
4.9 Recall distribution of entities after applying the updates 34
4.10 Precision distribution of discovered relations 34
4.11 Recall distribution of discovered relations 35
4.12 F1-score distribution of discovered relations 35
4.13 Precision distribution of relations after applying the classifier 36
4.14 Recall distribution of relations after applying the classifier 36
4.15 F1-score distribution of relations after applying the classifier 37
4.16 Comparison of F1-scores with and without using a classifier 38

58

4.17 PR-curve calculations . 38
4.18 PR-curve of the classified patterns . 39

6.1 PostgreSQL Application stack builder - install JDBC driver 42
6.2 Pattern Inspector displaying patterns (1) and corresponding tuples (2);

the signature of the Reuters articles pushing the patterns (e.g. ”– David
Chance, London Newsroom +44 171 542 5887”) 54

6.3 Pattern Inspector showing the difference between all (1) and disabled pat-
terns (2) . 55

6.4 CalaisViewer (1) in comparison to the Pattern Inspector: article (2), tuple
(3) and pattern (4) view . 56

6.5 Penn Treebank Annotation Tags . 57

59

Bibliography

[1] We knew the web was big... http://googleblog.blogspot.com/2008/
07/we-knew-web-was-big.html, 2008. last visited 2011-01-23.

[2] Sergey Brin. Extracting patterns and relations from the world wide web. In Proceed-
ings of the First International Workshop on the Web and Databases, WebDB 1998,
pages 172–183, March 1998.

[3] Michael J. Cafarella, Jayant Madhavan, and Alon Halevy. Web-scale extraction of
structured data. SIGMOD Rec., 37(4):55–61, 2008.

[4] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu 0002, and Yang
Zhang. Webtables: exploring the power of tables on the web. Publication of the
Very Large Database Endowment (PVLDB), 1:538–549, 2008.

[5] Michele Banko, Michael J. Cafarella, Stephen Soderl, Matt Broadhead, and Oren Et-
zioni. Open information extraction from the web. In Proceedings of the International
Joint Conferences on Artificial Intelligence 2007 (IJCAI-2007), pages 2670–2676,
2007.

[6] Doug Downey, Oren Etzioni, and Stephen Soderland. A probabilistic model of re-
dundancy in information extraction. In Proceedings of the International Joint Con-
ference on Artificial Intelligence 2005 (IJCAI-2005), page 1034. IJCAI-05, 2005.

[7] Michele Banko and Oren Etzioni. The tradeoffs between open and traditional re-
lation extraction. In Proceedings of the Association for Computational Linguistics
2008 (ACL-2008), pages 28–36, Columbus, Ohio, June 2008. Association for Com-
putational Linguistics.

[8] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In Pro-
ceedings of the Association for Computational Linguistics Conference 2003 (ACL-
2003), pages 423–430, 2003.

[9] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large
plain-text collections. In Proceedings of the 5th ACM International Conference on
Digital Libraries, pages 85–94, 2000.

[10] Jun Zhu, Zaiqing Nie, Xiaojiang Liu, Bo Zhang, and Ji-Rong Wen. Statsnowball:
a statistical approach to extracting entity relationships. In WWW ’09: Proceedings
of the 18th international conference on World wide web, pages 101–110, New York,
NY, USA, 2009. ACM.

60

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

[11] Michael J. Cafarella, Doug Downey, Stephen Soderland, and Oren Etzioni. Know-
ItNow: Fast, Scalable Information Extraction from the Web. In Proceedings of the
Human Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing 2005, pages 563–570, Vancouver, British Columbia,
Canada, October 2005. Association for Computational Linguistics.

[12] Stanford core nlp: A suite of core nlp tools. http://nlp.stanford.edu/

software/corenlp.shtml. last visited 2011-02-10.

[13] Kristina Toutanova and Christopher D. Manning. Enriching the knowledge sources
used in a maximum entropy part–of–speech tagger. In Proceedings of the Joint
SIGDAT Conference on Empirical Methods in Natural Language Processing and
Very Large Corpora (EMNLP/VLC-2000), pages 63–70, 2000.

[14] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Proceed-
ings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology (NAACL-2003), pages
173–180, Morristown, NJ, USA, 2003. Association for Computational Linguistics.

[15] The penn treebank project. http://www.cis.upenn.edu/~treebank/.
last visited 2011-02-10.

[16] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incorporating
non-local information into information extraction systems by gibbs sampling. In
The Association for Computer Linguistics, editor, Proceedings of the 43nd Annual
Meeting of the Association for Computational Linguistics (ACL-2005), pages 363–
370, 2005.

[17] Karthik Raghunathan, Heeyoung Lee, Sudarshan Rangarajan, Nate Chambers, Mi-
hai Surdeanu, Dan Jurafsky, and Christopher Manning. A multi-pass sieve for coref-
erence resolution. In Proceedings of the 2010 Conference on Empirical Methods in
Natural Language Processing (EMNLP-2010), pages 492–501, Cambridge, MA,
October 2010. Association for Computational Linguistics.

[18] Anish Das Sarma, Alpa Jain, and Divesh Srivastava. I4e: interactive investigation of
iterative information extraction. In Ahmed K. Elmagarmid and Divyakant Agrawal,
editors, Proceedings of the Special Interest Group on Management of Data Confer-
ence 2010 (SIGMOD-2010), pages 795–806. ACM, 2010.

[19] Lingpipe: A tool kit for processing text using computational linguistics. http:

//alias-i.com/lingpipe/index.html. last visited 2011-02-10.

[20] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu/, 2002. last visited 2011-02-10.

61

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://www.cis.upenn.edu/~treebank/
http://alias-i.com/lingpipe/index.html
http://alias-i.com/lingpipe/index.html
http://mallet.cs.umass.edu/

