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Abstract

The continous growth of data available, calls for e�cient algorithms to extract sensible
information. Tagging technologies therefore deal with the identi�cation and classi�cation
of relevant parts of structured and unstructured data. Analysis of data in their embedded
context is more complex but leads to higher quality conclusions about the content than
other approaches.
This paper deals with di�erent tagging technologies and describes their main �elds of
application as well as their implementations in di�erent programming languages and
usage in frameworks.

Zusammenfassung

Da die Datenmengen die laufend anfallen immer umfangreicher und gröÿer werden,
benötigt man e�ziente Algorithmen, um sinnvolle Informationen extrahieren zu können.
Tagging Technologies befasst sich deshalb mit der Identi�zierung und Kategorisierung
von interessierenden Teilen strukturierter sowie unstrukturierter Datenbasen. Analysen
der Daten in ihrem Kontext sind weit komplexer, führen aber zu qualitativ hochwertigen
Aussagen über den Inhalt. Der Inhalt dieser Arbeit widmet sich verschiedenen Tagging
Verfahren und beschreibt deren häu�gste Anwendungsgebiete sowie Implementierungen
in verschiedenen Programmiersprachen und Verwendung in Frameworks.
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1 Introduction

While text reading and understanding is relatively simple for human beings, computers
struggle with each word. On the other side, humans are not used to summarize millions
of documents to get an overview of knowledge available worldwide. So computers, that
can process large information in a much faster way should have the ability to build
knowlegde databases from unstructured data (each form of written natural language
which contains no further semantic information) where humans can select the relevant
documents without having to read through all documents. But developing these lin-
guistic and statistical algorithms for computers should turn out as a tedious task which
covers the academic �elds of data mining, information retrieval & extraction as well as
arti�cial intelligence.

This paper will not cover the algorithms developed to discover additional information in
unstructured data, but present some software implementations that have the competence
to resolve this problem. Some of them are developments that resolve the problem whereas
others provides a combination of existing tools adding only few enhancements but with
the target to distribute natural language processing (NLP) technology to everybody.

The second chapter presents some information and history about information retrieval
and tagging in the �eld of text processing. Then, chapter three will reveal some free
available implementations for the task of text mining and describe them in detail. Ad-
ditional to each implementation, a simple task of processing text is evaluated. Chapter
four summarises the main characteristics of the implementations in form of a table where
the gentle reader can hopefully identify an implementation long-needed at �rst glance.
The last section summarises the paper and tries to identify the one-and-only software
package that covers all parts of text mining.
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2 Information Extraction Background

�Information extraction (IE) is the identi�cation, and consequent or concurrent classi-
�cation and structuring into semantic classes, of speci�c information found in unstruc-
tured data sources, such as natural language text, providing additional aids to access and
interpret the unstructured data by information systems� [1]. The process of generating
written text starts with an idea at an abstract level that needs to be split up into smaller
parts which are re�ected in a set of sentences. The components of these parts textit�are
translated into a set of semantic roles, which are in their turn translated in a set of
grammatical and lexical concepts� [1]. After the convertion into character sequences
the result can be written down. Information extraction therefore can be seen as the
inversion of this process - extract relevant information form a set of words, sentences
and documents. Information retrieval (IR) is the more general form of IE and assumes
that ' 'we already have a need for information that we are able to formulate, and then
�nd relevant items in a store (collection) of items� [2].

Before Salton �rst de�ned retrieval systems in 1966 (rephrased 1986) as �The SMART
retrieval system takes both documents and search requests in unrestricted English, per-
forms a complete content analysis automatically, and retrieves those documents which
most nearly match the given request� [3], the United States military indexed german sci-
enti�c research documents. In the 1950 America again started research in mechanized
literature search because knowledge or more precise, lack of knowledge about russian
technology motivated them. The 1960s and 70s saw a boom in IR research which de-
veloped the fundamental measurements for the quality of IR systems: precision and
recall. Further advances in computer technology allowed systems feasable of full text
searches that pushed commercial application. The next two decades brought plenty of
IR algorithms i.e. the probabilistic model, the vector space model and the fuzzy logic
model. At the end of the 1980s Tim Berners-Lee developed a hypertext system which is
broadly known as the World Wide Web (WWW). This turned out to be a new challenge
for IR because of the awesome growth of the system (185,497,213 web sites in January
2009 counted by netcraft.com).

Before 1990, IR systems proofed their function under laboratory conditions and had
little commercial impact. But the spread of the WWW lead to new IR systems, the
web search engines. These systems were designed to process more information than ever
before and should end-users help to �nd information spread all over the world.
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While �rst engineers researched to retrieve the documents containing the information
they were looking for, it became clear, that their goal has to be the understanding of
the natural language. One task of NLP is part-of-speech tagging or simply tagging.
This task covers text annotation with additional information (meta information) that
is not as obvious to the computer as for humans, but essential for the analysis of the
informational background, the meaning of the reviewed text. �The widespread interest in
tagging is founded on the belief that many NLP applications will bene�t from syntactically
disambiguated text.� [4]. At the beginning of POS tagging, the accuracy of an early
deteministic rule-based tagger (in principle if-then statements) labled only 77% of the
words correctly (Greene and Rubin 1971). Nowadays, POS taggers can achieve an
accuracy between 96% and 97% [4]. �The insight that tagging is an intermediate layer
of representation that is useful . . . is due to the corpus linguistics work that was led by
Francis and Ku£era at Brown University in the 1960s and 70s� [4]. They �rst published
the �Brown corpus�1 in 1964 which is a manually annotated representation of present-
day edited American English which �consists of 1,014,312 words of running text of edited
English prose printed in the United States during the calendar year 1961� [5].

This corpora is spilt into di�erent domains and is used to train POS taggers. Most
modern taggers pass through two phases:

• a learning phase is used to build up a probability model that can be applied in

• the extraction phase do determine the correct part-of-speech of the text.

As you can imagine, not every word can be covered by the Brown corpus (many other
corpora for speci�c domains are also available) which leaves place for improvements.
So it is not surprising, that many papers present and discuss di�erent POS algorithms,
models and implementations trying to �nd the ideal path�nder for succeeding IE tasks.

1Brown corpus http://khnt.aksis.uib.no/icame/manuals/brown/
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3 Available Implementations

This chapter covers some important implementations of tagging technologies. It includes
a general description, a list of their features, their distribution characteristics and links
to get further information. At the end of each description a short getting started guide
will help you to get an insight to the according toolkit. The better part of the implemen-
tations are downloadable, open source software projects whereas others are web services
(TermExtractor, OpenCalais) which can only be used online. Additionally to the web
services, only TreeTagger does not reveal its sources. Another detail, worth to keep in
mind is, that many toolkits implements tagging algorithms on their own, whereas some
others consists of a collection of readily implemented software components with good
documentation to provide easy access to NLP (natural language processing) technolo-
gies.

3.1 Rapidminer

RapidMiner is the successor of YALE and its developer Rapid-i claims that it is �is
the world-wide leading open-source data mining solution due to the combination of its
leading-edge technologies and its functional range.� [6] It is written in Java and is

Figure 3.1: Rapidminer Logo

distributed under the A�ero GPL. RapidMiners features can be accessed through a
command line, a gra�cal user interface (GUI) as well as by a Java API (application
programming interface).
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A main feature of RapidMiner, winner of the Open Source business Foundation Award
2008 [7] is �the modular operator concept which allows the design of complex nested oper-
ator chains for a huge number of learning problems in a very fast and e�cient way (rapid
prototyping)� [6]. The company behind RapidMiner is the open-source data mining spe-
cialist Rapid-i that enables other companies to use leading-edge technologies for data
mining and business intelligence [6]. Rapid-i, which is based in Dortmund, Germany,
distributes an enterprise and a community version that is currently available in version
4.3 for windows and linux. The enterprise version is available as an annual subscription
service which �gives you the highest level of Rapid-i support and access to a worldwide
acting team with decades of experience supporting the most demanding enterprise de-
ployments� [6]. Rapid-I writes as follows: �Enterprise Edition = Community Edition
+ More Features + Services + Guarantees� [6]. The core bene�ts of the paid version
in comparision to the community project would be additional operators, support and
ticket system, guaranteed response times as well as a bug �xing guarantee.

The main features of RapidMiner are [6]

• freely available open-source knowledge discovery environment

• 100% pure Java (runs on every major platform and operating system)

• Knowledge discovery (KD) processes are modeled as simple operator trees which
is both intuitive and powerful

• operator trees or subtrees can be saved as building blocks for later re-use

• internal XML representation ensures standardized interchange format of data min-
ing experiments

• simple scripting language allowing for automatic large-scale experiments

• multi-layered data view concept ensures e�cient and transparent data handling

• Flexibility in using RapidMiner:

� GUI for interactive prototyping

� command line mode (batch mode) for automated large-scale applications

� Java Application Programming Interface (API) to ease usage of RapidMiner
from your own programs

• simple plugin and extension mechanisms, a broad variety of plugins already exists
and you can easily add your own

• powerful plotting facility o�ering a large set of sophisticated high-dimensional vi-
sualization techniques for data and models

• more than 400 machine learning, evaluation, in- and output, pre- and post-processing,
and visualization operators plus numerous meta optimization schemes
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• machine learning library WEKA (see section 3.5) is fully integrated

• RapidMiner was successfully applied on a wide range of applications where its
rapid prototyping abilities demonstrated their usefulness, including text mining,
multimedia mining, feature engineering, data stream mining and tracking drifting
concepts, development of ensemble methods, and distributed data mining.

While knowledge discovery is a highly complex process it requires careful analysis, speci-
�cation, implementation and testing. Rapid prototyping is an important part because it
helps to identify adequate methods and parameters enabling developers to make crucial
design decisions as early as possible [8].

Furthermore, RapidMiner supports a large number of plugins for all aspects of data
mining, eg. it uses meta operators to reduce e�ort spent to adjust each single step,
adds a large assortment of visualisation techniques to represent the output and provides
functionality to place breakpoints after each operator.

Operators are used in RapidMiner for any analysis tasks. It can be seen as a functional
unit that �receives its input, performs a de�ned action and delivers some output� [8].
Furthermore it is possible to connect operators in a way that the outcome of an operator
can be used as input for the next operator which enables more complex experiments.

Over 400 operators are available and covers di�erent �elds of application [6]:

• In- and output: for di�erent formats including

� Ar�, C4.5, CSV, Excel �les, datasets from databases, text �les

• Machine learning algorithms: learning schemes for regression, classi�cation and
clustering tasks

� Support vector machines, Decision trees and rule learners, Bayesian learners,
Meta learning, Clustering

• Data preprocessing: useful for dataset preparation

� Discretization, Normalization, Sampling, Dimensionality reduction

• Feature operators

� Feature selection, Feature weighting and relevance, Feature construction

• Performance evaluation: schemes to estimate performance

� Cross-validation, Training and test set splitting, Signi�cance tests

• Meta operators: optimization operators for experiment design

� Parameter optimization, Learning curves, Experiment loops and iterations

• Visualization: for logging and presenting results
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� 1D, 2D and 3D plots, Built-in color histogram and distribution plots, Quartile
/ box plots, Lift charts

While RapidMiner includes WEKA it additionally provides operators for WEKA learn-
ing schemes and attribute elevators.

In the case of missing functionality, it is possible to implement and provide specialized
operators. The forthcoming plugin system provides interfaces for enhancements from
di�erent authors, �e.g. plugins for time series processing or text document to word vector
transformation� [6]. At the moment there are four groups of plugins available:

• Text plugins for input texts in di�erent formats

• Value plugins for series methods for feature extraction from series data - includes
loaders for audio �les

• Data stream plugins for data stream mining and for learning drifting concepts

• CRF (conditional random �eld) plugins for named entity recognition

�RapidMiner's most important characteristic is the ability to nest operator chains and
build complex operator trees. In order to support this characteristic, the RapidMiner
data core acts like a data base management system and provides a multi-layered data
view concept on a central data table which underlies all views� [6]. �For example, the
�rst view can select a subset of examples and the second view can select a subset of
features. The result is a single view which re�ects both views. Other views can create
new attributes or �lter the data on the �y. The number of layered views is not limited� [6].

The homepage of RapidMiner1 provides an installation guide, a tutorial, a GUI manual
and �nally a Java API documentation. The documents show very detailed information
for novices beginning data mining with RapidMiner. For a quick overview Rapid-i
recorded a screencast (interactive tour) to get in touch with RapidMiner. For a more
detailed introduction, Rapid-i o�ers courses for beginners as well as for machine learning
experts.

Some global, well-known companies like Ford, IBM, HP, Cisco, BNP Paribas uses Rapid-
Miner. One of the references on the Rapid-I homepage points to the Austrian organi-
sation �Mobilkom Austria�. It uses datamining to categorize and forward their 80.000
monthly incoming, spam cleaned customer emails to the according departments [9].

After downloading the correct package from Rapid-i2 and extracting the packed archive,
I started Rapidminer by typing java -jar rapidminer.jar in the lib subdirectory. This

1http://rapid-i.com/
2http://rapid-i.com/content/view/26/84/lang,de/
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Figure 3.2: Rapidminer screenshot: Main gui
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initializies the Rapidminer GUI. Then I opened the provided screencast and followed
the instructions to get in touch with the program. I created a operator chain consisting
of an ARFF input source and a J48 Decision Tree.

Figure 3.3: Rapidminer screenshot: Adding a new operator to the tree

After running the classi�cation I tried some visualisation plugins to present the results.

Furthermore it is possible to set breakpoints before / after each operator and watch at
the data processed so far. All these test can also be achieved by using the command
line or the Java API. To screencast was easy to follow although it was recorded with an
earlier version.
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Figure 3.4: Rapidminer screenshot: Operator chain of a classi�cation problem

Figure 3.5: Rapidminer screenshot: Scatter 3D plot of classi�cation result
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3.2 Natural Language Toolkit NLTK

NLTK is a collection of python modules and corpora for statistical natural language
processing. Python and this toolkit are released under the GPLv2 and allow any pro-
grammer to get started with NLP tasks without having to spend too much time on
gathering resources. �The most important advantage of using NLTK is that it is entirely
self-contained. Not only does it provide convenient functions and wrappers that can be
used as building blocks for common NLP tasks, it also provides raw and pre-processed
versions of standard corpora used in NLP literature and courses� [10]. To use this toolkit,
python 2.4 is required but the team around the main developers Steven Bird, Edward
Loper and Ewan Klein already plan to migrate to python 3.0 in the year 2009.

For active development with NLTK, �it provides basic classes for representing data rel-
evant to natural language processing; standard interfaces for performing tasks such as
tokenization, part-of-speech tagging, and syntactic parsing; and standard implementa-
tions for each task which can be combined to solve complex problems� [11].

NLTK was designed with four primary goals in mind [11]:

• Simplicity - the developers �tried to provide an intuitive and appealing framework
along with substantial building blocks� [11]

• Consistency - �all the data structures and interfaces are consistent� [11]

• Extensibility - �the toolkit is organized so that it is usually obvious where extensions
would �t into the toolkit's infrastructure� [11]

• Modularity - simple, well-de�ned interfaces makes it easier to change and extend
the toolkit

The documentation mentions three futher announcements that users should be aware
of:

• The toolkit is very mature until now but will further be developed to meet new
requirements.

• It does not need to be highly optimized for runtime performance. Suitable al-
gorithms would require the use of programming languages like C or C++ which
would make the toolkit less accessible and more di�cult to install.

• A clear implementation is more preferable as ingenious yet indecipherable ones.

The get in touch with the project, an online book, which will be published too in mid
2009 is available. Additional installation instructions and how to's are available too.
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The website3 is well arranged and provides downloads for di�erent operating system
platforms.

Downloading and extracting of the source package4 was straight forward. To �nish
installation open a terminal, change to the directory where the extracted sources are and
type sudo python setup.py install. To work with corpora5, these have to be downloaded.
The start download of corpora and other features start the python interactive console
and type the following statements:� �

1 >>> import nltk

2 >>> nltk.download()� �

Figure 3.6: NLTK screenshot: The downloader helps to download additional resources
and plugins

3http://www.nltk.org/
4http://nltk.googlecode.com/�les/nltk-0.9.7.zip
5http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml
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After downloading the all corporas ( 100 MB) you can work with them. For this example
I used a corpora from the NY Times and started to discover named entities6.� �

1 >>> from nltk.corpus import ieer

2 >>> docs = ieer.parsed\_docs('NYT\_19980315')

3 >>> tree = docs[1].text

4 >>> print tree

5 ...

6 ``It's

7 like

8 when

9 you

10 start

11 a

12 colony,''

13 said

14 (PERSON Mike Godwin)

15 ,

16 chief

17 counsel

18 for

19 the

20 (ORGANIZATION Electronic Frontier Foundation)

21 ,

22 an

23 advocacy

24 group

25 that

26 only

27 a

28 (DURATION few years)

29 ago

30 was

31 practically

32 alone

33 in

34 the

35 field.

36 ...� �
Then I wanted to work with own texts and decided to download a news article from the
NY Times web site. To transform the HTML format into required, tokenized format for

6extracting named entities with NLTK: http://nltk.googlecode.com/svn/trunk/doc/howto/relextract.html
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the POS Tagger I used the following instructions789� �
1 >>> from urllib import urlopen

2 >>> import nltk

3 >>> from nltk.corpus import brown // import brown corpus

4 >>> brown\_news = brown.tagged\_sents(categories='news') // use brown categorie

news for unigram tagger

5 >>> tagger = nltk.UnigramTagger(brown\_news)

6 >>> raw = urlopen("http://www.nytimes.com/2009/02/07/business/economy/07bailout

.html?hp").read()

7 >>> text = nltk.clean\_html(raw) // remove html tags

8 >>> tokens = nltk.wordpunct\_tokenize(text) // tokenize text

9 >>> list(tagger.tag(tokens)) // apply unigram tagger

10 [('New', 'JJ-TL'), ('U', None), ('.', '.'), ('S', 'NN'), ('.', '.'), ('Plan', '

NN-TL'), ('to', 'TO'), ('Help', 'NN-HL'), ('Banks', 'NNS-TL'), ('Sell',

None), ('Bad', 'JJ-HL'), ('Assets', None), ('-', None), ('NYTimes', None),

('.', '.'), ('com', None), ('Skip', 'NP'), ('to', 'TO'), ('article', 'NN'),

('Try', None), ('Electronic', None), ('Edition', None), ('Log', None), ('

In', 'IN'), ('Register', 'NN-TL'), ('Now', 'RB'), ('Home', 'NN-TL'), ('Page

', 'NP'), ('Today', 'NR'),� �
Afterwards I was surprised how simple it was to work with the NLTK package. Instal-
lation was easy, the functions well documented on the NLTK web site.

3.3 General Architecture for Text Engineering (GATE)

GATE is a open source Java implementation which is maintained by the She�eld NLP
Group and funded by institutions and other projects like The European Commission,
EPSRC (Engineering and Physical Sciences Research Council), AKT (Advanced Knowl-
edge Technology: sponsor of ISWC2005 and ESWC2005), NeOn Project and much more.
It �is an architecture that contains functionality for plugging in all kinds of NLP soft-
ware, such as POS taggers, sentence splitters, named entity recognizers, etc.� [12]. It is
licenced under LGPL and hosted at SourceForge.

The GATE website describes it as [12]

• the Eclipse of Natural Language Engineering, the Lucene of Information Extrac-
tion, a leading toolkit for Text Mining

7Dealing with HTML: http://nltk.googlecode.com/svn/trunk/doc/en/ch03.html
8Tagging: http://nltk.googlecode.com/svn/trunk/doc/howto/tag.html
9General how to: http://dtl.unimelb.edu.au/view/action/singleViewer.do?dvs=1234005884999 825&locale=de_DE&search_terms=000006440&application=DIGITOOL-
3&frameId=1&usePid1=true&usePid2=true
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• used worldwide by thousands of scientists, companies, teachers and students

• comprised of an architecture, a free open source framework (or SDK) and graphical
development environment

• used for all sorts of language processing tasks, including Information Extraction
in many languages

• funded by di�erent research councils, the EU and other commercial users

• 100% Java reference implementation of ISO TC37/SC4 and used with XCES in
the ANC

• 10 years old in 2005[12], used in many research projects and compatible with IBM's
UIMA

• based on MVC, mobile code, continuous integration, and test-driven development,
with code hosted on SourceForge

The framework has bene�ts for scientists performing experiments with language and
computation [12]:

• Repeatability - by making it easier to repeat comparable experiments across dif-
ferent sites and platforms GATE makes it easier to be sure that a particular result
is not a glitch

• Quantitative evaluation - GATE includes a built-in system for comparing annota-
tion data on documents and generating quantitative metrics such as precision and
recall

• Collaboration - Multi-site collaboration puts a premium on software integration
and portability, both areas which GATE-based software excels

• Reuse not reinvention - Language processing resources that have been integrated in
GATE are likely to have a longer working life and to be reused more often because
using them does not require learning fresh installation and usage conventions for
every tool

While GATE components are kinds of Java Beans, these appear in three di�erent
shapes[12]:

• Language Resource (LR): refers to data-only resources such as lexicons, corpora,
thesauri or ontologies

• Processing Resource (PR): refers to resources whose character is principally pro-
grammatic or algorithmic, such as lemmatisers, generators, translators, parsers or
speech recognisers. For example, a part-of-speech tagger is best characterised by
reference to the process it performs on text. PRs typically include LRs, e.g. a tag-
ger often has a lexicon; a word sense disambiguator uses a dictionary or thesaurus.
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• Visual Resources (VRs): visualisation and editing components interacting with
the GUI

All resources are packed into JAR10 �les bundled with XML (eXtensible Markup Lan-
guage) con�guration �les. Theses resources are known as CREOLE (Collection of
REusable Objects for Language Engineering).

The GATE developers (20 active programmers) suggest usage of their framework for the
disciplines [12]:

• Computational Linguistics

• NLP

• Language Engineering

Computational linguistics is a part of the science of language that uses computation
as an investigative tool. On the other side, NLP is part of the science of computation
whose subject matter is data structures and algorithms for human language processing.
Finally, Language engineering engages in building language processing systems whose
cost and outputs are measurable and predictable.

Because it is written in Java it supports each operating environment running Java 5 or
newer. The project started in 1996 and uses popular projects like WEKA, TreeTagger,
Snowball Stemmer, Google API and others. The website11 provides di�erent down-
load packages, user guides, a programmers guide, links to academic publications as well
as demos and example codes. Furthermore GATE supplies movie tutorials which are
screencasts showing GATE in action. Some companies using GATE are AT&T, Master
Foods NV, British Gas PLC, Syntalex Ltd., Thompson Corporation.

GATE provides a runnable jar for download. This �le includes a gra�cal installer which is
started by calling java -jar gate-5.0-beta1-build3048-installer.jar. After the installation,
change into the GATE directory and start ./bin/gate.sh to run the GATE GUI.

Working with the GUI is not as simple as with Rapidminer, but similar. After startup
of the application you can see a tree view on the left side. There you can add a new
application (pipeline in our case) which should process our source (document bailout,
copy & paste from a NY Times article) through a sentence splitter followed by a POS
tagger.

After processing the chain of operations our document is annotated. All found words
are listed below and the text highlights them. If you choose one word from the list, the
annotation of the text begins to blink. The properties on the right side allows you to
choose which information should be highlighted.

10Java archive
11http://gate.ac.uk/
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Figure 3.7: GATE screenshot: Properties of our source document
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Figure 3.8: GATE screenshot: Adding new processing resources
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Figure 3.9: GATE screenshot: Examining the result of the operation
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3.4 Open NLP

OpenNLP is a set of Java based NLP tools that �are not inheriently useful by themselves,
but can be integrated with other software to assist in the processing of text. . . .The idea
is to have a basic infrastructure in place for researchers and developers to collaborate
on open source NLP projects. It is hoped that one day OpenNLP will be one of the
major sites for cutting edge open source NLP software where people can �nd the software
they need and get help on using and developing it� [13]. Parts of it are licenced under
the Apache Licence v2 whereas others are available under the LGPL. The project is
additionally hosted at Sourceforge.

�OpenNLP also hosts a variety of java-based NLP tools which perform sentence detec-
tion, tokenization, POS tagging, chunking and parsing, named entity detection, and
coreference12 using the OpenNLP Maxent machine learning package� [13].

One project under the umbrella of OpenNLP is MAXENT - the maximum entropy
framework. �Maximum entropy modeling is a framework for integrating information
from many heterogeneous information sources for classi�cation � [14] where classi�cation
problems are described by a number of features which corresponds to a constraint on the
model. �Choosing the maximum entropy model is motivated by the desire to preserve as
much uncertainty as possible� [14]. Maxent has perfomed well on di�cult classi�cation
tasks like tasks like POS tagging, sentence detection, prepositional phrase attachment,
and named entity recognition. For programmers new to Maxent, a how to is available
on the Maxent website [14]. It brie�y describes how to create and train a model for the
purpose of �nding names in a text.

The website13 provides a download link, a Java API documentation and a short readme
section which describes how to install and run the tools.

After downloading the opennlp package from Sourceforge.net, I consulted the online
documentation for further information. I followed the suggestion to build the package
with the supplied shell script (Java & Ant required) by calling ./build.sh in the opennlp
directory. For an english POS tagging test I continued with downloading a model14 and
extracted the content (tag.bin) into the opennlp directory. Before starting the test, I
created a text �le (text.txt) which content should be tagged. Finally I called� �

1 java -cp <jar files in the lib dir + opennlp.jar> opennlp.tools.lang.english.

PosTagger tag.bin < test.txt� �
The annotated output of this operation looks like:

12coreference occurs when multiple expressions in a sentence or document have the same referent
13http://opennlp.sourceforge.net/
14POS model: http://opennlp.sourceforge.net/models/english/postag/tag.bin.gz
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� �
1 Google/NNP is/VBZ one/CD of/IN a/DT number/NN of/IN companies/NNS devising/VBG

ways/NNS to/TO control/VB the/DT demand/NN for/IN electric/JJ power/NN as/

IN an/DT alternative/NN to/TO building/NN more/JJR power/NN plants./, The/

DT company/NN has/VBZ developed/VBN a/DT free/JJ Web/NNP service/NN called/

VBD PowerMeter/NNP that/IN consumers/NNS can/MD use/VB to/TO track/VB

energy/NN use/NN in/IN their/PRP\$ house/NN or/CC business/NN as/IN it/PRP

is/VBZ consumed./VBN

2 Google/NNP is/VBZ counting/VBG on/IN others/NNS to/TO build/VB devices/NNS to/

TO feed/VB data/NNS into/IN PowerMeter/NNP technology./, While/IN it/PRP

hopes/VBZ to/TO begin/VB introducing/VBG the/DT service/NN in/IN the/DT

next/JJ few/JJ months,/NNS it/PRP has/VBZ not/RB yet/RB lined/VBN up/IN

hardware/NN manufacturers./.� �
The corresponding source code can be found in:� �

1 <opennlp dir>src/java/opennlp/tools/lang/english/PosTagger.java� �
and covers the relevant code for generating the tags.� �

1 POSTaggerME tagger; // part-of-speech tagger that uses maximum entropy

2 tagger = new PosTagger(model,(Dictionary)null);

3
4 BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); //

content of test.txt is System.in

5 for (String line = in.readLine(); line != null; line = in.readLine())

6 {

7 System.out.println(tagger.tag(line));

8 }� �
3.5 Waikato Environment for Knowledge Analysis

(WEKA)

The goal of the open source Java project WEKA is to �build a state-of-the-art facility
for developing machine learning techniques and to apply them to real-world data mining
problems� [15]. Target groups for the development are ML (machine learning) researchers
and industrial scientists as well as students. Developer of the WEKA projects is the
Univerity of Waikato in New Zealand.
WEKA commits itself to the following objectives [15]:

• make ML techniques generally available
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Figure 3.10: The WEKA logo[15]

• apply them to practical problems that matter to New Zealand industry

• develop new machine learning algorithms and give them to the world

• contribute to a theoretical framework for the �eld

The software presents a �collection of algorithms for solving real-world data mining prob-
lems� [15] which are available under the GPL and includes tools for classi�cation, re-
gression, clustering as well as association rules. Facilities for data pre-processing and
visualization are available too. All these tools can be used by implementing the pro-
vided Java API in your own projects, by passing relevant parameters to the command
line executeable or just by starting the included GUI which is called WEKA Knowledge
Explorer. �The WEKA Knowledge Explorer is an easy to use GUI that harnesses the
power of the weka software. Each of the major weka packages �lters, classi�ers, clus-
terers, associations and attribute selection is represented in the Explorer along with a
visualization tool which allows datasets and the predictions of classi�ers and clusterers
to be visualized in two dimensions� [15].

WEKA is available in version 3.6 (released 19.12.2008) for download on the homepage15.
Furthermore, the WEKA project provides a API documentation in javadoc format, a
wiki, some presentations and tutorials, and the book �Data Mining: Practical Machine
Learning Tools and Techniques (Second Edition)� written by Ian H. Witten and Eibe
Frank, two professors on the University of Waikato. A community documentation is
managed by Pentaho16, a company providing commercial open source business intelli-
gence solutions based on WEKA. An extensive manual is contained in the installation
package of WEKA. This toolkit is frequently used in other NLP toolkits (eg. GATE).

After downloading the WEKA installer (I have downloaded the package for windows),
you only have to start the application and follow the instructions to install it on your
computer. The web site17 gave the hint to add -Xmx1024M in the batch �le starting

15http://www.cs.waikato.ac.nz/ ml/index.html
16http://www.pentaho.com/index.php
17WEKA installation: http://weka.wiki.sourceforge.net/Primer
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WEKA. The main application consists of four buttons which allow you to open four
di�erent dialogs.

Figure 3.11: WEKA screenshot: The small main application - entry point for all exper-
iments

For our �rst experiment I choosed Explorer and loaded an ARFF sample �le into WEKA
which is easy to accomplish on the �rst tabbed pane of the application (open �le...). I
did not choose any �lter but selected a J48 decision tree on the classi�cation tab.

I selected default settings and started the experiment with the Start button. After some
seconds WEKA presented the results in the text area labled Classi�er output.

To get a gra�cal representation of the outcome, switch to the Visualize tab and select
a plot. There you can assign the properties to the axis and change some plotter related
attributes.

Another way to create an experiment is to use the KnowledgeFlow Environment which
is further dialog of the main application. With KnowlegdeFlow you can design your
problem in a graphical way. After designing your problem, you only have to load the
data in the Ar�Loader (context menu).

3.6 JwebPro

JWebPro is a Java based �web processing toolkit that can interact with Google search via
Google Web APIs and then process the returned web documents in a couple of ways.�
[16] The output - a corpus - can be used for an independent natural language processing.
It is published under GPL and hosted at Sourceforge.

JWebPro is based upon JTextPro and includes the following features [16]
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Figure 3.12: WEKA screenshot: Select one classi�er from the combobox
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Figure 3.13: WEKA screenshot: Textual representation of the output
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Figure 3.14: WEKA screenshot: Gra�cal representation of the output
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Figure 3.15: WEKA screenshot: Gra�cal design of an problem
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• interacts with Google search via Google Web APIs

• web crawler downloading relevant web documents according to the index list re-
turned by Google search

• parsing HTML documents (Htmlparser library)

• sentence boundary detection (using maximum entropy classi�er trained on WSJ
corpus)

• word tokenization

• POS tagging (using CRFTagger18)

• phrase chunking (using CRFChunker)

The CRFTagger in JWebPro is di�erent from POS tagging for pure text/natural lan-
guage (eg. in JTextPro) because Web documents are more noisy and less grammatical.
The project team adapted their tagger to this requirements over time. [16]

This toolkit tries to provide a framework to build applications in the domain of NLP
and information retrieval which processes data from the world wide web. If online
functionality is not required JTextPro would be the right choice.

JWikiDoc, an extension of JWebPro is included in this project. It is �a tool for crawling
and downloading Wikipedia documents� [16]. This tool is useful �for building Web data
collections/corpora� [16] from Wiki pages and its functionality covers removing HTML
tags, navigation links and noisy text. The number of retrieved Wiki pages can be
adjusted by setting maximum number of retrieved documents or the maximum hyperlink
depth.

The ground lying Java-based CRFTagger for English itself is built upon FlexCRFs which
is designed to achieve high tagging speed. �The model was trained on sections 01..24
of WSJ corpus and using section 00 as the development test set (accuracy of 97.00%).�
[17]

FlexCRF itself is written in C/C++ using STL19 library and is designed to deal with
large datasets and millions of features. Furthermore it supports �rst-order and second-
order Markov CRFs. The package includes a parallel version of FlexCRF which allows
users to train conditional random �elds on massively parallel processing systems sup-
porting the Message Passing Interface20.

18Conditional Random Field Tagger
19The Standard Template Library is a generic C++ library that provides many of the basic algorithms

and data structures of computer science
20MPI is an high performance interface for massively parallel machines where many parallel working

processes communicates with each other to solve a problem faster than each process on its own
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To work with JWebPro, a Google API key is required. While Google do not issue new
keys, it is not possible to use the Google SOAP API. At application startup, the Google
key has to be suplied with an parameter �le (option.txt) otherwise it will not work.

The website21 of JWebPro provides a brief documentation in form of a readme �le which
is included in the JWebPro download package too. Some links to related projects like
JWikiDoc and JTextPro are also available on the website.

It was not possible to launch JWebPro because of the missing Google API key. In-
stead I used JTextPro which is responsible for text processing inside of JWebPro. The
download is available on the same web site which covers the sources and the compiled
library jtextpro.jar. The included readme �le explains the structure of the command line
parameters. The application can be used by typing:

� �
1 java -Xmx512m -classpath ./lib/jtextpro.jar jtextpro.JTextProcessor ./models ./

samples/input.txt}\\ within the JTextPro folder.

2
3 Loading sentence segmentation model ...

4 Reading options ...

5 Reading options completed!

6 Reading the context predicate maps ...

7 Reading context predicate maps (19803 entries) completed!

8 Reading the context predicate maps ...

9 Reading label maps (2 entries) completed!

10 Reading dictionary ...

11 Reading dictionary (19803 entries) completed!

12 Reading features ...

13 Reading 22200 features completed!

14 Loading sentence segmentation model completed!

15
16 Loading POS tagging model ...

17 Reading options ...

18 Reading options completed!

19 Reading the context predicate maps ...

20 Reading context predicate maps (211800 entries) completed!

21 Reading label maps ...

22 Reading label maps (45 entries) completed!

23 Reading dictionary ...

24 Reading dictionary (211800 entries) completed!

25 Reading features ...

26 Reading 428699 features completed!

21http://jwebpro.sourceforge.net/
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27 Loading POS tagging model completed!

28
29 Loading phrase chunking model ...

30 Reading options ...

31 Reading options completed!

32 Reading the context predicate maps ...

33 Reading context predicate maps (240114 entries) completed!

34 Reading label maps ...

35 Reading label maps (23 entries) completed!

36 Reading dictionary ...

37 Reading dictionary (240114 entries) completed!

38 Reading features ...

39 Reading 548751 features completed!

40 Loading phrase chunking model completed!� �
The output �le is called like the input �le with the additional extension .out. and looks
like
Why/WRB/B-ADVP Is/VBZ/OMicrosoft/NNP/B-NP Afraid/NNP/I-NP of/IN/B-PP
Google/NNP/B-NP
In comparison to the input
Why Is Microsoft Afraid of Google
it contains POS annotations. Information about these annotations can be found on the
web site of the University of Leeds22.

3.7 Automatic Content Extraction (ACE)

This is not a NLP toolkit as described in the other sections. �The objective of the
NIST (National Institute of Standards and Technology) ACE series of evaluations is
to develop human language understanding technology that provides automatic detection
and recognition of key information about real-world entities, relations, and events that
are mentioned in source data� [18]. Input sources include text, audio and image data
whereas text can be written in Arabic, Chinese and English. Until now, detection of
real-world objects was limited to documents while coreferencing these objects across
documents was impossible. �This focus is changing in 2008 with the ACE evaluation
scaling up to cross-document and cross-language global integration and reconciliation of
information� [18].

The Automatic Content Extraction (ACE) program, a new e�ort to stimulate and bench-
mark research in information extraction, presents four challenges [19]

22http://www.scs.leeds.ac.uk/ccalas/tagsets/brown.html
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• Recognition of entities, not just names - entity detection and tracking (EDT)

• Recognition of relations - relation detection and characterization (RDC)

• Event extraction - event detection and characterization (EDC)

• Extraction is measured not merely on text, but also on speech and on OCR input.
The lack of case and punctuation, including the lack of sentence boundary markers,
poses a challenge to full parsing of speech.

�The LDC (Linguistic Data Consortium) is an open consortium of universities, com-
panies and government research laboratories. It creates, collects and distributes speech
and text databases, lexicons, and other resources for research and development purposes.
The University of Pennsylvania is the LDC's host institution.� [20]

The NIST website23 do not provide software components to start with NLP operations,
but it provides evaluation data which can be used to test your NLP algorithms. The
results of your test can be submitted to NIST which compares the reference output to
your output and calculates the di�erence.

3.8 TermExtractor

It is an online webservice that is developed by the Linguistic Computing Laboratory
(LCL) which is part of the Computer Science Department of the University of Roma
�La Sapienza�. �The group works in the areas of the semantic web (the web of next
generation), computational linguistics, e-learning, and information retrieval� [21].

�TermExtractor is a software package for the extraction of relevant terms consensu-
ally referred in a speci�c domain� [21]. Application input can be a corpus of domain
documents that will be parsed and plausible terms are extracted. �Two entropy-based
measures, called Domain Relevance and Domain Consensus, are then used to select
only those terms which are relevant to the domain of interest or consensually referred
throughout the documents. This is achieve with the aid of a set of contrastive corpora
from di�erent domains� [21].

Furthermore, TermExtractor is able to recognize terms in many types of document (txt,
pdf, ps, dvi, tex, doc, rtf, ppt, xls, xml, html/htm, chm, wpd) and text layouts: title,
bold, italic, underlined, colored, capitalized, smallcaps. The text layout is used to assign
to terms with selected layouts a greater importance.

23http://www.nist.gov/speech/tests/ace/
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The system is intended to collect the �common terminology�. If a term is only referred in
one document, it is not considered. The larger the the corpus is, the better TermExtrac-
tor can work. It uses statistical measures, and, in absence of a statistically signi�cant
evidence, a term cannot be extracted! Three main measures are of signi�cance:

• Domain Relevance: the term must be frequent in the corpus you submit, and
not frequent or never found in other reference corpora (this allows you to skip
terminology which is not speci�c of this domain, eg the term world wide web is
found also in other domains). In one of the options, you can change the �default�
contrastive domains used for this analysis.

• Domain Consensus: within the domain to be analysed, the frequency of a term
must be evenly distributed across documents, simulating the consensus that a term
must gain before being accepted as a true domain term.

• Lexical cohesion: this is a statistical measure that computes the likeliness that a
multi word string is really a terminological string and not a sequence of unrelated
terms.

TermExtractor is available on the website24 and requires a free registration to use it.
In case you do not want to register, you can only submit 1 document with a maximum
size of 5 megabytes. Once registered you can start to upload archives of documents
to extract terminology from. Instructions for using TermExtractor are available online
and will provide additional information on the statistical measures25 used by TermEx-
tractor. While TermExtractor is an online web service no further (installation, how-to)
documentation is provided.

Using TermExtractor is very simple because it is an web service which provides an text
input �eld on the web site.

Figure 3.16: TermExtractor screenshot: Text input �eld on the web site

While not registered, I could only submit one document to the web service. After
submitting, the web site shows a progress bar indicating the status of the operation.

24http://lcl2.di.uniroma1.it/termextractor
25http://lcl2.di.uniroma1.it/termextractor/help/termextractor_measures.pdf
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Figure 3.17: TermExtractor screenshot: Progress bar showing the status of term extrac-
tion

After �nishing the extraction process, the results are presented on a new page which
contains a short explanation and information for each term:

• Relevance

• Consensus

• Cohesion

• Frequency

3.9 TreeTagger

The TreeTagger is a closed source tool for annotating text with POS and lemma infor-
mation which has been developed at the Institute for Computational Linguistics of the
University of Stuttgart by Helmut Schmid. It supports the languages German, English,
French, Italian, Dutch, Spanish, Bulgarian, Russian, Greek, Portuguese, Chinese and
old French texts and can be adapted to other languages if manually tagged corpora are
available. It can also be used as a chunker (tool which breaks input �le into parts) for
English, German and French only.

�It di�ers from other probabilistic taggers in the way the transition probabilities are
estimated� [22]. �The TreeTagger is a Markov Model tagger which makes use of a deci-
sion tree to get more reliable estimates from contextual parameters.� [23] �The resulting
tagger achieves higher accuracy than a standard trigramm tagger. Due to an e�cient
implementation, the tagger is able to tag up to 10.000 tokens per second on a SPARC10
workstation. Thus, the TreeTagger is a fast and high-quality tool for the annotation of
corpora with POS information� [22].
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Figure 3.18: TermExtractor screenshot: The result of the extraction process

The TreeTagger project startet in the year 1993 and was funded by the Ministry of
Science and Research of the Land Baden-Württemberg. Documentation to this project
is originated in �a revised version of a paper which was presented at the International
Conference on New Methods in Language Processing, 1994, Manchester, UK� [22]. Ex-
ecuteables (no source code) are available for windows, linux, mac-osx and sparc systems
and its licence grants you (the licensee) the right to use the TreeTagger software (the
system) for evaluation, research and teaching purposes. Any other usage of the system
(in particular for commercial purposes) is forbidden [24]. Furthermore a windows GUI
is available for download separately. The last GUI update was accomplished in March
2008. The TreeTagger software was last updated on 18th of July 2008 (timestamp of
the treetagger executeable) and comes with a brief description of the command line
parameters in a readme �le.

This closed source tool comes with perl scripts and binaries for di�erent platforms that
allows you a quick installation. After downloading the platform package, the tagging
scripts, the install script and the language speci�c parameter �le into the same directory
(do not unzip), provide the installer script with the required �le mode (chmod +x install-
tagger.sh) and execute it. This will extract the downloaded �les and establish a working
environment for TreeTagger. Working with the software is quite easy. The directory
<TreeTagger directory>/cmd contains a perl script for each NLP operation available in
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TreeTagger. Starting the POS tagger looks like (test.txt contains text from a NY Times
news article):� �

1 >./cmd/tree-tagger-english test.txt

2 reading parameters ...

3 tagging ...

4 Google NP <unknown>

5 is VBZ be

6 one CD one

7 of IN of

8 a DT a

9 number NN number

10 of IN of

11 companies NNS company

12 devising VBG devise

13 ways NNS way

14 to TO to

15 control VB control

16 the DT the

17 demand NN demand

18 for IN for

19 electric JJ electric

20 power NN power

21 as IN as

22 an DT an

23 alternative NN alternative

24 to TO to

25 building VBG build

26 more JJR more

27 power NN power

28 plants NNS plant

29 . SENT .

30 The DT the

31 company NN company

32 has VBZ have

33 developed VBN develop

34 ...� �
The output is split into three columns: First with the original word from the input �le,
followed by the POS annotation in the second column. The last column contains the
lemma of the input word. Because TreeTagger is closed source, I can not provide any
source snippets.
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3.10 OpenCalais

OpenCalais encapsulates NLP technology within an online web service that is operated
by Thomson Reuters after the acquisition of ClearForest. �Calais is a rapidly grow-
ing toolkit of capabilities that allow you to readily incorporate state-of-the-art semantic
functionality within your blog, content management system, website or application.� [25]

Figure 3.19: OpenCalais logo

Usage is free of charge, but some costly licence models with advanced features are
available too. The service handles plain text as an input that should be semanti-
cally tagged with the help of NLP techniques. The result of the web service is ei-
ther HTML text where all identi�ed people, places, events & facts are highlighted or
an RDF �le (Resource Description Framework) which is a standard for describing re-
sources on the web. To get a quick overview of the capabilities of Calais, their homepage
(http://www.opencalais.com/) provides an online application26 called DocumentViewer
which processes text from an HTML text area. Furthermore a browser plugin for Inter-
net Explorer and Firefox called Gnosis is available to tag every page visited and presents
the results in a sidebar of your browser.

The Calais web service is the core API for many applications. A lot of e�ort is spent to
bring these tools to the developers to enable them building great applications for other
users of the community. The following illustration shows tools provided to the Calais
community.

Some interesting tools provided by Calais for developers are [25]:

• Calais web service

• Calais Marmoset allows your web site to provide microformat metadata to other
metadata crawlers

• The Calais Pipes Service enables Yahoo! Pipes users to enrich their RSS feeds
with semantic metadata

26http://sws.clearforest.com/calaisViewer/
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Figure 3.20: OpenCalais work�ow

Figure 3.21: OpenCalais contents
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• The Tagaroo WordPress plugin supercharges your WordPress blog with automated
tag suggestions and Flickr image searching and incorporation

• Gnosis is a Firefox (3.0 and 2.0) and IE plugin that automatically analyzes content
as you read it and provides you with a variety of tools to explore the people,
companies, places and things you¯e reading about

• The Submission Tool performs semantic analysis of �les supplied by the user via
a series of submission screens

• The Microsoft O�ce SharePoint Server 2007 (MOSS 2007) Open Calais Integra-
tion automatically adds semantic metadata and intelligent search capabilities to
content pages on MOSS 2007 content management web sites.

• Microsoft Pop�y allows users to easily create mashups that include information
from various sources. The �Calais Pop�y Block� shows how Microsoft Pop�y users
can enrich their Twitter-based mashups, and possibly others, with semantic meta-
data provided by OpenCalais

Some applications using OpenCalais have arised recently. A couple of them are o�cial
solutions from the Thompson Reuters company, others are community driven:

• Thinkpedia (community) - �Thinkpedia is a new way to navigate and explore the
contents of Wikipedia. It is what we call a �Visual Wiki�. Thinkpedia uses Seman-
ticProxy in order to extract semantics out of Wikipedia articles, which are then
shown in an interactive visualization which is created with Thinkmap.� [26]

• SemantalyzR (community) �...is an easy to use tool for analyzing web pages for
semantic data. On our page analysis you'll �nd keyword links to search pages for
that keyword. These search pages are made up from results of various services
on the web.� [25] Some prominent supporters are Yahoo!, Flickr, Twitter and
Wikipedia.

• Calais Tagaroo Wordpress plugin and Phase2Technologys Drupal plugin for auto-
matically tagging your blog.

• LinkedFacts.com �...helps by creating references to informations on things men-
tioned in your articles, such as background infos on people, neighborhood news on
cities, company pro�les, images, bookmarks, search results, and much more.� [27]

• SemanticProxy �...translates the content of any URL on the web to its semantic
representation in RDF, HTML or Microformats.� [9]

Calais did not provide an open source product, but introduced three ways to access their
services. Dependent on what you need, 3 licence models are available:

• Open Calais web service allowes users �to submit up to 40,000 transactions per day
at a maximum rate of four transactions per second�[25].
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• Calais Professional provides identical functionality as Open Calais, but with a high-
performance SLA27 which de�nes �a daily transaction limit of 100,000 transactions
and an enhanced 20 transactions per second rate� [25]. Although the transaction
volume can be extended to a maximum of 2.000.000 per day.

• ClearForest28 On-Premise Solutions installs Calais technology inside your company
and allows the buyer to modify the metadata generation engine �to create new
entities and relations and to incorporate user lexicons� [25].

The OpenCalais website29 provides access to a gallery of tools, a forum and a blog
containing tons of information about this web service. You need to register if you want
to use the SOAP / REST API to access the webservice. Information about using these
programming interfaces are on the website too.

While OpenCalais provides a tool called Document Viewer30 where you can paste the
text that should be annotated, I want to describe the soap interface. To work with the
API you need to register31 for free to obtain a API key. More information about the web
service parameters is available on the tools section32 of the web site. The required web
service description is provided too33. So I startet to create a light soap client to utilize
the web service. With the following steps this task was completed in a little while:

• Create new Java project in Eclipse (3.4)

• Create new Web Service Client (provide the url to the WSDL �le to autogenerate
the required source �les)

• Create a Java class utilizing the request

The simple java class required to do the soap request looks like:� �
1 public class SOAPQuery {

2
3 public static void main(String[] args)

4 {

5 try

6 {

7 Calais service = new CalaisLocator();

8 CalaisSoap call = service.getcalaisSoap();

9

27Service Level Agreement: formal de�nition between two parties about the level of service
28provides text-driven business intelligence solutions, aquired by Reuters in April 2007
29http://www.opencalais.com/
30http://sws.clearforest.com/calaisviewer/
31OpenCalais registration http://www.opencalais.com/apps/register
32OpenCalais documentation: http://www.opencalais.com/calaisAPI
33OpenCalais WSDL: http://api.opencalais.com/enlighten/?wsdl
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Figure 3.22: OpenCalais screenshot: Generating a web service client in Eclipse 3.4
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10 // supply parameters

11 java.lang.String licenseID = "7hw523rj236rw97mnjj7qw5u";

12
13 java.lang.String content = "Ludwig van Beethoven , 16 December 1770[1] -

26 March 1827) was a German composer and pianist. He was a crucial

figure in the transitional period between the Classical and Romantic

eras in Western classical music, and remains one of the most acclaimed

and influential composers of all time." + "Born in Bonn, then in the

Electorate of Cologne in western Germany, he moved to Vienna in his

early twenties and settled there, studying with Joseph Haydn and

quickly gaining a reputation as a virtuoso pianist. Beethoven's

hearing gradually deteriorated beginning in his twenties, yet he

continued to compose, and to conduct and perform, even after he was

completely deaf.";

14
15 java.lang.String paramsXML = "<c:params xmlns:c=\"http://s.opencalais.com

/1/pred/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">"

+ "<c:processingDirectives c:contentType=\"text/txt\" c:

enableMetadataType=\"GenericRelations\" c:outputFormat=\"Text/Simple

\">" + "</c:processingDirectives>" + "<c:userDirectives c:

allowDistribution=\"true\" c:allowSearch=\"true\" c:externalID=\"17

cabs901\" c:submitter=\"ABC\">" + "</c:userDirectives>" + "<c:

externalMetadata>" + "</c:externalMetadata>" + "</c:params>";

16
17 // do the call and read the result

18 java.lang.String result = call.enlighten(licenseID, content, paramsXML);

19
20 // print output to std.out

21 System.out.println("Result = " + result);

22 }

23 catch (Exception ex)

24 {

25 ex.printStackTrace();

26 }

27
28 }

29
30 }� �

As you can see, the soap service provides a function called enlighten which takes three
parameters:

• licenceID - the key obtained from OpenCalais after registration
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• content - a string which contains the text that should be annotated (the �rst two
paragraphs of the Wikipedia entry about Beethoven)

• paramsXML - a XML parameter �le34 containing some processing information (e.g.
the output format Text/Simple; other possibilities are XML/RDF and Text/Mi-
croformats)

The return of the web service looks as follows:� �
1 Result = <!-- Use of the Calais Web Service is governed by the Terms of Service

located at http://www.opencalais.com. By using this service or the results

of the service you agree to these terms of service. -->

2 <!--City: Vienna, Cologne,

3 Country: Germany,

4 Person: Ludwig van Beethoven, Joseph Haydn,

5 --><OpenCalaisSimple>

6 <Description>

7 <allowDistribution>true</allowDistribution>

8 <allowSearch>true</allowSearch>

9 <calaisRequestID>3b10002c-6a30-4654-8bbe-17bdddba1f10</calaisRequestID>

10 <externalID>17cabs901</externalID>

11 <id>http://id.opencalais.com/2aLe3hwFIQMn-TDOg41ePQ</id>

12 <about>http://d.opencalais.com/dochash-1/13099a0c-6ff1-3fb2-a12f-

a936545aa726</about>

13 </Description>

14 <CalaisSimpleOutputFormat>

15 <Person count="8" relevance="0.905">Ludwig van Beethoven</Person>

16 <City count="1" relevance="0.197">Vienna</City>

17 <City count="1" relevance="0.197">Cologne</City>

18 <Country count="1" relevance="0.197" normalized="Germany">Germany</Country>

19 <Person count="1" relevance="0.197">Joseph Haydn</Person>

20 <Topics />

21 </CalaisSimpleOutputFormat>

22 </OpenCalaisSimple>� �
The output �rst contains a summary of all recognised entities grouped by the kind of
entity. Then some meta information about the request is displayed. At the end the
details to the entities are presented in the simple text output format.

34OpenCalais XML input parameters: http://www.opencalais.com/APIcalls#inputparameters
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3.11 Apache UIMA

The Apache Unstructured Information Management Applications (UIMA) are part of
a framework which has been developed by IBM and is intended to analyze unstruc-
tured information like text, video and audio data �in order to discover knowledge that
is relevant to an end user�[28]. The applications are written in Java or C++ and are
a�liated with each other. To enable interaction between the components, these have to
implement interfaces de�ned by the framework, which manages and controls data �ow
among the components. Furthermore UIMA can wrap components as network services,
which allows the application to spread over a network of computers to achieve its goals.

Figure 3.23: The UIMA framework [28]

While UIMA is an empty framework, it provides a basis to develop and combine di�erent
analytic components. The major �eld of application is text search. For sophisticated
search applications, unstructured text has to be processed with common tagging tech-
niques like tokenization, lemmatization and POS detection. Furthermore UIMA provides
analysis components for entity and relation detection.
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The UIMA framework is a open source project and available under the Apache Licence
for download. Implementations are available written in Java and in C++ for Linux
and Windows. For developers, Apache also supplies an plugin for simple annotator
development in the Eclipse Java IDE. An annotator is the part of the program that
analyses the input and returns an annotated document. Additionally to Java and C++
annotators can be written in Perl, Python and TCL. Some annotators are already
available for download to do the real work of extracting information from unstructured
data:

• Whitespace Tokenizer - uses simple withespace segmentation to annotate token
and sentences.

• Snowball35 - provides a stemming algorithm for several languages

• Regular Expression - detects entities based on regular expressions like email ad-
dresses, URLs, phone numbers, . . .

• Tagger - implementation of a Hidden Markov Model tagger

• Java Bean Scripting Framework (BSF36) - an interfaces which interprets annotators
in scripting languages like Beanshell37, Rhino Javascript38, Jython39 and JRuby40.

• Dictionary - looks up a simple dictionary to create annotations

• OpenCalais - wraps the OpenCalais web service and returns its results

• Concept Mapper - is a individually con�gurable dictionary based annotator

Several user manuals and guides, online javadoc as well as getting-started documents
are provided on the website41 to show users how they can install, setup and customize
the software. A well kown project using the UIMA components is U-compare42 which
has recently received the UIMA Award 2008. It is an text mining/NLP system which
includes the world largest UIMA component repository. �U-Compare allows users to
build complex NLP work�ows via an easy drag-and-drop interface, and makes visualiza-
tion and comparison of the outputs of these work�ows simple� [29]. Although UIMA has
been moved to the Apache project web site in June 2008, some packages remain on the
IBM web site43 (e.g. SemanticSearch and IBM UIMA Adapter).

35Snowball http://snowball.tartarus.org/
36BSF http://jakarta.apache.org/bsf
37Beanshell http://www.beanshell.org/
38Rhino Javascript http://www.mozilla.org/rhino
39Jython http://jython.sourceforge.net/Project/index.html
40JRuby http://jruby.codehaus.org/
41http://incubator.apache.org/uima/
42http://www.u-compare.org/index.html
43IBM UIMA web site: http://www.alphaworks.ibm.com/tech/uima
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Apache UIMA is available for download on the web site and includes all required libraries,
documentation, examples and Eclipse plugins. To get in touch with the programming
interface, Apache provides a good tutorial which describes the provided examples. Fur-
thermore the UIMA examples could be imported into Eclipse, which made it easy to
handle the annotator classes and the corresponding descriptor �les. UIMA works with
so called annotators which are responsible for identify relevant patterns in a document
and attach a feature structure (type and set of attribute-value pairs ) describing the
matched tokens in more detail (metadata). One or more Annotators are combined into
an Analysis Engine (AE) and forms a analysis logic for an document. All annotations
created are represented in the UIMA Common Analysis Structure (CAS). �The CAS is
the central data structure through which all UIMA components communicate� [29].

The �rst example to start with in the tutorial is a room number annotator:� �
1 /**

2 * Example annotator that detects room numbers using Java 1.4 regular

expressions.

3 */

4 public class RoomNumberAnnotator extends JCasAnnotator_ImplBase {

5 private Pattern mYorktownPattern = Pattern.compile("\\b[0-4]\\d-[0-2]\\d\\d\\

b");

6 private Pattern mHawthornePattern = Pattern.compile("\\b[G1-4][NS]-[A-Z]\\d\\

d\\b");

7
8 /**

9 * @see JCasAnnotator_ImplBase#process(JCas)

10 */

11 public void process(JCas aJCas) {

12 // get document text

13 String docText = aJCas.getDocumentText();

14 // search for Yorktown room numbers

15 Matcher matcher = mYorktownPattern.matcher(docText);

16 while (matcher.find()) {

17 // found one - create annotation

18 RoomNumber annotation = new RoomNumber(aJCas);

19 annotation.setBegin(matcher.start());

20 annotation.setEnd(matcher.end());

21 annotation.setBuilding("Yorktown");

22 annotation.addToIndexes();

23 }

24 // search for Hawthorne room numbers

25 matcher = mHawthornePattern.matcher(docText);

26 while (matcher.find()) {

27 // found one - create annotation
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28 RoomNumber annotation = new RoomNumber(aJCas);

29 annotation.setBegin(matcher.start());

30 annotation.setEnd(matcher.end());

31 annotation.setBuilding("Hawthorne");

32 annotation.addToIndexes();

33 }

34 }

35 }� �
An application called DocumentViewer provided with the package helps you to test the
annotator. The main screen o�ers some input �elds to supply the directory of the input
documents, the output directory and the location of the annotator description.

Figure 3.24: UIMA screenshot: The main window

The description must be provided to UIMA at runtime and includes the following
information[29]:

• Name, description, version, and vendor

• The annotator's inputs and outputs, de�ned in terms of the types in a Type System
Descriptor

• Declaration of the con�guration parameters that the annotator accepts

This �le can be comfortable be edited by using the Component Descriptor Editor avail-
able for Eclipse.

After providing the required information to the Document Analyzer, you can start inter-
active mode (a dialog opens where you can input your text) or run the analyse process
on the supplied documents. When analysis �nishes a dialog shows you all analysed
documents.
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Figure 3.25: UIMA screenshot: The component descriptor editor in Eclipse

Figure 3.26: UIMA screenshot: After analysis, select a document for display
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By double clicking one, the annotator output is visualised in a further dialog where you
can control the annotations.

Figure 3.27: UIMA screenshot: DocumentAnalyzer showing the annotations

To change the annotation behavior, you only need to change the annotator source code.
Di�erent examples are provided for sentence tokenizer, entity recognition and others.

3.12 LingPipe

LingPipe is a Java toolkit for linguistic analysis of human language developed by Alias-i
which started 1995 as a collaboration of graduate students at the University of Pennsyl-
vania. It supports HTML, XML and plain text and provides a command line for your
analysis. Some demos also includes a GUI or a web interface but a GUI is generally not
included. Alias-i distributes this toolkit under its Royalty Free License Version 1 which
�governs the copying, modifying, and distributing of the computer program or work con-
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taining a notice stating that it is subject to the terms of this License and any derivative
works of that computer program or work� [30].

A feature overview of LingPipe's information extraction and data mining tools [30]:

• track mentions of entities (e.g. people or proteins)

• link entity mentions to database entries

• uncover relations between entities and actions

• classify text passages by language, character encoding, genre, topic, or sentiment

• correct spelling with respect to a text collection

• cluster documents by implicit topic and discover signi�cant trends over time

• provide part-of-speech tagging and phrase chunking

Alias-i provide an extensive online documentation with comprehensive tutorials for all
NLP tasks possible with LingPipe eg. classi�cation, named entity recognition, cluster-
ing, POS tagging, senctence detection, . . . . Furthermore a javadoc as well as setup
instructions are available in the website44. For further reading, a LingPipe blog45 is
accessable at WordPress.com.

To test this implementation free downloading of the core package46 and for a POS test
you need a corpus too. I decided to download the Brown corpus47 (link is also available on
the Lingpipe web site). After downloading these packages, extract them and start train-
ing the POS tagger on the Brown corpus. Detail information is available in the tutorial
section48 on the web site. For my tests I used the ant build �le in the directory /lingpipe-
directory/demos/tutorial/posTags and adapted the data.dir and data.pos.brown param-
eter to train it with the Brown corpus: ant -f build.xml model-brown. The output of this
operation is a model �le and the following processing information:� �

1 ant -f build.xml model-brown

2
3 Buildfile: build.xml

4 compile:

5 model-brown:

6 [java] n-gram=8

7 [java] num chars=256

8 [java] lambda fact=8.0

9 [java] corpus parser=BrownPosCorpus

44http://alias-i.com/lingpipe/
45LingPipe blog http://lingpipe-blog.com/
46Lingpipe core package http://alias-i.com/lingpipe/web/download.html
47http://prdownloads.sourceforge.net/nltk/nltk-data-0.3.zip
48http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
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10 [java] corpus file=/home/websta/download/lingpipe-3.7.0/nltk-data-0.3/

brown.zip

11 [java] model file=../../models/pos-en-general-brown.HiddenMarkovModel

12
13 BUILD SUCCESSFUL

14 Total time: 47 seconds� �
The parameters N-GRAM, NUM_CHARS and LAMBDA are for the Hidden Markov
Model (HMM) to de�ne �how many characters to use as the basis for the model, the
total number of characters, and an interpolation parameter for smoothing�[30].

After generation of the HMM I started POS tagging of an english text from NY Times.
The script uses input from standard input where I pasted the text and presents the
following output to standart out:� �

1 ant -f build.xml run-brown

2 Buildfile: build.xml

3
4 compile:

5
6 run-brown:

7 [java] Reading model from file=../../models/pos-en-general-brown.

HiddenMarkovModel

8 [java]

9 [java]

10 Google is one of a number of companies devising ways to control the demand for

electric power as an alternative to building more power plants. The company

has developed a free Web service called PowerMeter that consumers can use

to track energy use in their house or business as it is consumed.

11 [java] INPUT>

12 [java] FIRST BEST

13 [java] Google_np is_bez one_cd of_in a_at number_nn of_in companies_nns

devising_vbg ways_nns to_to control_vb the_at demand_nn for_in

electric_jj power_nn as_cs an_at alternative_nn to_in building_vbg

more_ap power_nn plants_nns ._. The_at company_nn has_hvz developed_vbn

a_at free_jj Web_np service_nn called_vbd PowerMeter_np that_cs

consumers_nns can_md use_vb to_to track_vb energy_nn use_nn in_in

their_pp\$ house_nn or_cc business_nn as_cs it_pps is_bez consumed_vbn

._.

14 [java]

15 [java] N BEST

16 [java] # JointLogProb Analysis

17 [java] 0 -605,213 Google_np is_bez one_cd of_in a_at number_nn

of_in companies_nns devising_vbg ways_nns to_to control_vb the_at
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demand_nn for_in electric_jj power_nn as_cs an_at alternative_nn

to_in building_vbg more_ap power_nn plants_nns ._. The_at

company_nn has_hvz developed_vbn a_at free_jj Web_np service_nn

called_vbd PowerMeter_np that_cs consumers_nns can_md use_vb to_to

track_vb energy_nn use_nn in_in their_pp\$ house_nn or_cc

business_nn as_cs it_pps is_bez consumed_vbn ._.

18 [java] 1 -605,549 Google_np is_bez one_pn of_in a_at number_nn

of_in companies_nns devising_vbg ways_nns to_to control_vb the_at

demand_nn for_in electric_jj power_nn as_cs an_at alternative_nn

to_in building_vbg more_ap power_nn plants_nns ._. The_at

company_nn has_hvz developed_vbn a_at free_jj Web_np service_nn

called_vbd PowerMeter_np that_cs consumers_nns can_md use_vb to_to

track_vb energy_nn use_nn in_in their_pp\$ house_nn or_cc

business_nn as_cs it_pps is_bez consumed_vbn ._.

19
20 <other sentences>

21
22 [java]

23 [java] CONFIDENCE

24 [java] # Token (Prob:Tag)*

25 [java] 0 Google 0,811:np 0,119:uh 0,067:nn 0,001:

nps 0,001:np\$

26 [java] 1 is 0,999:bez 0,000:pp\$\$ 0,000:np

0,000:vbz 0,000:dt

27 [java] 2 one 0,549:cd 0,434:pn 0,015:vbn 0,001:

rb 0,000:jj

28 [java] 3 of 1,000:in 0,000:rb 0,000:vbz 0,000:

nn 0,000:rp

29 [java] 4 a 1,000:at 0,000:np 0,000:nn 0,000:

np\$ 0,000:pn\$

30 [java] 5 number 1,000:nn 0,000:jj 0,000:vbn 0,000:

vb 0,000:np

31 [java] 6 of 1,000:in 0,000:nn 0,000:jj 0,000:

nns\$ 0,000:nn\$

32
33 <other tokens>

34
35 [java]

36 [java]

37 [java] INPUT>

38 [java] Java Result: 130� �
The output is divided into three parts. In the �rst part, input text is split up into sen-
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tences which are split up into tokens. Each token is labeled with syntactic labels showing
the tokens word-category disambiguation. This kind of output is called the ��rst-best�.
Second part contains the �nth best� ouput, generates a score for the annotation of each
token of the sentence and displays the score next to the annotated tokens followed by
the second best score for the same tokens with slightly other annotation. Finally, the
third part of the output presents a table that shows the con�dence of the correctness of
the assigned annotation e.g. the tagger has a 81.1% con�dence that �Google� is a proper
noun in singular form. With a propability of 11.9% it could also be a interjection.

Key points of the code behind this operation are a regular expression tokenizer, generated
and used by the statements� �

1 HiddenMarkovModel hmm = (HiddenMarkovModel) <__ObjectInputStream__>.readObject

();

2 HmmDecoder decoder = new HmmDecoder(hmm);

3 static TokenizerFactory TOKENIZER_FACTORY = new RegExTokenizerFactory("(-|'|\d

|\p{L})+|\S");

4 Tokenizer tokenizer = TOKENIZER_FACTORY.tokenizer(<charArray>,<startIndex>,<

endIndex>);

5 String[] tokens = tokenizer.tokenize();� �
The �rst output is generated by the statement:� �

1 String[] tags = decoder.firstBest(tokens);

2 System.out.println("\nFIRST BEST");

3 for (int i = 0; i < tokens.length; ++i)

4 System.out.print(tokens[i] + "_" + tags[i] + " ");� �
The nth best is calculated by:� �

1 Iterator nBestIt = decoder.nBest(tokens);

2 for (int n = 0; n < MAX_N_BEST && nBestIt.hasNext(); ++n)

3 {

4 ScoredObject tagScores = (ScoredObject) nBestIt.next();

5 double score = tagScores.score();

6 String[] tags = (String[]) tagScores.getObject();

7 System.out.print(n + " " + format(score) + " ");

8 for (int i = 0; i < tokens.length; ++i)

9 System.out.print(tokens[i] + "_" + pad(tags[i],5));

10 System.out.println();

11 }� �
To get the con�dence output, these statements are required:
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� �
1 TagWordLattice lattice = decoder.lattice(tokens);

2 for (int tokenIndex = 0; tokenIndex < tokens.length; ++tokenIndex)

3 {

4 ScoredObject[] tagScores = lattice.log2ConditionalTags(tokenIndex);

5 System.out.print(pad(Integer.toString(tokenIndex),4));

6 System.out.print(pad(tokens[tokenIndex],15));

7 for (int i = 0; i < 5; ++i)

8 {

9 double logProb = tagScores[i].score();

10 double conditionalProb = Math.pow(2.0,logProb);

11 String tag = (String) tagScores[i].getObject();

12 System.out.print(" " + format(conditionalProb) + ":" + pad(tag,4));

13 }

14 }� �
3.13 Orange

This toolkit is an open source C++ data mining software which provides techiques for
preprocessing, modelling and data exploration. It is developed by the University of
Ljubljana and licenced under GPL. Orange can be accessed either directly by command
line, �through python scripts or through GUI objects called Orange Widgets� [31]. Exist-
ing, time-critical components are written in C++ but a scripting interface for python is
included in a way that the user can test some ideas interactively. Additional components
can be therefore be written in C++ whereas python is used as a glue language.

Some yet implemented features of Orange include [31]:

• Orange can read from and write to tab-delimited �les and C4.5 �les, and supports
also some more exotic formats.

• Preprocessing covers feature subset selection, discretization, feature utility estima-
tion for predictive tasks.

• Predictive modelling includes classi�cation trees, naive bayesian classifer, k-NN,
majority classi�er, support vector machines, logistic regression, rule-based classi-
�ers (e.g., CN2).

• Ensemble methods including boosting, bagging, and forest trees.

• Data description methods provides various visulizations (in widgets), self-organizing
maps, hierarchical clustering, k-means clustering, multi-dimensional scaling, and
other.
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• Model validation techniques, that include di�erent data sampling and validation
techniques (like cross-validation, random sampling, etc.), and various statistics
for model validation (classi�cation accuracy, AUC, sensitivity, speci�city, ...).

This project provides an extensive online documentation for all features, a forum as well
as example python scripts and data sets on its website49.

To install orange, your system has to meet the requirements (see installation instructions
on the web site). There is no precompiled package available, but a subversion repository
where you can download the latest revision. After downloading you have to build the
system with the supplied make �le. In my tests I tried to classify a dataset containing
�votes for each of the U.S. House of Representatives Congressmen on the 16 key votes;
a class is a representative's party�[31]. The classi�cation should �nd characteristica of
republican and democratic votes and determine the party on the basis of the 16 key
votes. The data set looks like (�le voting.tab):� �

1 republican n y n y y y n n n y y y y n y

2 republican n y n y y y n n n n n y y y n

3 democrat y y y y n n n n y n y y n n

4 democrat n y y n y n n n n y n y n n y

5 democrat y y y n y y n n n n y y y y y� �
To use the orange python package you only have to import it:� �

1 import orange

2 data = orange.ExampleTable("voting") // file called voting.tab

3 classifier = orange.BayesLearner(data)

4 print "Possible classes:", data.domain.classVar.values

5 print "Probabilities for democrats:"

6 for i in range(5):

7 p = classifier(data[i], orange.GetProbabilities)

8 print "%d: %5.3f (originally %s)" % (i+1, p[1], data[i].getclass())� �
This part of code prints out the probability that a person with the supplied votes is
member of the republican or of the democratic party.� �

1 Possible classes: <republican, democrat>

2 Probabilities for democrats:

3 1: 0.000 (originally republican)

4 2: 0.000 (originally republican)

5 3: 0.005 (originally democrat)

6 4: 0.998 (originally democrat)

7 5: 0.957 (originally democrat)� �
49http://www.ailab.si/orange/
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Important for this example is the correct installation of the right versions that are
required to build the package.
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4 Classification

Here I'll try to pack the implementations from previous chapter into an table to com-
pare them. Important criteria would be availability (open source/costs), implementing
algorithms, usability, references and so on.

This section shows the characteristics of the investigated implementions in a clearly
arranged table. The relevance of the criteria and their importance are discussed below.
The next section (5) recycles this table and summarises the analysis of the toolkits. The
criteria are:

• web service or available for download

• open source

• programming language (java, pyhton, c/c++, other)

• licence model

• documentation (installation guides, how-tos, tutorial, API documentation)

• examples

• system requirements (additional software packages)

• setup

• usability (generating results with the help of documentation)

• GUI available

• visualisation

• community activity (how active is the community - forum, mailing lists)

Our paper only evaluates free available software toolkits in contrast to an evaluation1

of fourteen desktop data mining tools[32] which tested tools ranging from 75 USD to
25,000 USD. While costs for aquirement should be low whereas quality should reach a
maximum. Setting up relevant characteristics to reach the maximum is a very subjective
process but we are the opinion, that our twelve parameters are a good start separate the
wheat from the cha�.

1http://www.datamininglab.com/TOOLCOMPARISON/tabid/58/Default.aspx
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Rapidminer
√ √ √

AGPL + ++ 1234

NLTK
√ √ √

GPLv2 ++ ++
√

++ 146

GATE
√ √ √

LGPL ++ ++ + 46

OpenNLP
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Apache v2 © ©
WEKA

√ √ √
GPL ++ ++

√
26

JWebPro
√ √ √

GPL © © ©
Term Extractor

√
©

TreeTagger
√

10 11 © �

Open Calais
√

++ ++ 312

Apache UIMA
√ √ √ √ √

Apache + ++ + 236

LingPipe
√ √ √

RFL13 ++ ++ 12

Orange
√ √ √ √

GPL ++ + 3
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√ √ √
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√ √ √
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OpenNLP
√
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1Courses, trainings
2Wiki
3Forum
4Movie
5Community edition, company supported
6Mailing list
7Apache Ant
8No indication on the website found, timestamp of the binaries
9Browser based solution
10Perl
11Permission for evaluation, research and teaching purposes
12Blog
13Royality free licence v1
14Additional packages required for building and visualisation
15No graphical interface available
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5 Conclusion

At the beginning of this thesis, my knowledge about the diversity of implementation in
the �elds of IE and especially tagging was limited to two or three software packages.
During literature research an immense number of available tools I had troubles to select
the most interesting implementations available. But soon I discovered, that some pack-
ages were massively reused by others (eg. WEKA, OpenCalais) whereas others reuses
other basic tools (eg. OpenNLP, Rapidminer, GATE). When I studied the available
manuals, how-tos and forum entries I registered that the prevalence of the tools mas-
sively depends on the community supporting it. Some implementations are commercial
projects that have a free community edition. These packages are very mature and have
very good documentation (eg. Rapidminer, OpenCalais, LingPipe).

After all, it is not possible to present an overall winner at this point. The useage and
the experience with other IE toolkits and programming languages will de�nitely have a
strong impact on to selection process.

Some suggestions that you should think about before selecting your implementation:

• Keep in mind, that some of the tools provide plenty of interfaces to import and
export di�erent formats which would reduce sunk costs if you are unsatis�ed with
your �rst choice.

• The implementations with GUI (Rapidminer, WEKA, OpenCalais, GATE) are
more suitable for unexperienced users. So the users do not have to learn a pro-
gramming language �rst but can concentrate on their IE tasks.

• Start with a toolkit that is well documented and that has a active community. It
could become very frustrating if noone answers your posts in the forum.
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